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Universality of parametric spectral correlations: Local versus extended perturbing potentials

F. M. Marchetti, I. E. Smolyarenko, and B. D. Simons
Cavendish Laboratory, Madingley Road, Cambridge CB3 0HE, United Kingdom

~Received 30 April 2003; published 26 September 2003!

We explore the influence of an arbitrary external potential perturbationV on the spectral properties of a
weakly disordered conductor. In the framework of a statistical field theory of a nonlinears-model type we find,
depending on the range and the profile of the external perturbation, two qualitatively different universal
regimes of parametric spectral statistics~i.e., cross correlations between the spectra of HamiltoniansH and
H1V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key
indicator of universality, and find the connection between the coordinate system in this space which makes the
translational invariance manifest, and the physically measurable properties of the system. In particular, in the
case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering
off the perturbing potentialV. They also have a purely statistical interpretation in terms of the moments of the
level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors
using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic
structures.
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I. INTRODUCTION

The statistical approach to the study of the quantum sp
tra of complex HamiltoniansH was pioneered in the 1950
in connection with the study of resonances in nuclear s
tering@1,2#. The approach was formalized by Dyson@2#, who
identified three universal types of spectral statistics as de
mined by the symmetry properties of the corresponding
sembles of random Hamiltonians. The theory of Wigner a
Dyson, together with its extensions, is usually referred to
random matrix theory~RMT!. Within RMT, spectral correla-
tions of each type~symmetry class! of statistics are describe
by the corresponding set of universal functions, once
energies are rescaled by the average level spacingD̄. The
latter is theonly nonuniversal parameter of the theory, whe
nonuniversality implies dependence on the specifics~other
than the symmetry class! of the distribution functions defin
ing the Hamiltonian ensemble. The symmetry classes are
beled by the indexb which takes the valuesb51 for real
~time-invariant! Hamiltonians ~so-called orthogonal class!,
b52 for complex Hamiltonians~unitary class!, and b54
for Hamiltonians with broken spin-rotation symmetry~sym-
plectic class!.

For example, in the unitary class (b52), the normalized
two-point correlation function of the density of states~DOS!
n(«)5trd(«2H),

R2~V!5D̄2^n~«1V/2!n~«2V/2!& ~1!

can be expressed as

R2~s!511
1

2
ReE

1

`

dl1E
21

1

dleips1(l12l)

5d~s!112k2~s!, ~2!

where
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k~s!5
sin~ps!

ps
, ~3!

s5V/D̄, ands15s1 i0. The delta function in Eq.~2! rep-
resents the autocorrelation of an energy level with itself;
constant term is the disconnected contribution, and the os
lating term corresponds to nontrivial correlations betwe
different levels. Similar, although slightly more convolute
expressions are well known for other symmetry classes.

As became clear in the subsequent development of
theory, Wigner-Dyson statistics possesses a remarkable
versality: beyond the manifestly model constructions
RMT, Wigner-Dyson statistics occurs both in quantu
weakly disordered systems@3,4# H5H01Hdis, where the
statistical description follows naturally from the ensemble
realizations of the disordered part of the HamiltonianHdis,
as well as inindividual classically chaotic Hamiltonians@5#
upon averaging over a sufficiently wide spectral windo
The status of the last two statements is somewhat differ
while the former has been rigorously established@3,4#, the
latter statement is known as the Bohigas-Giannoni-Sch
~BGS! @5# conjecture. Crucially, the existence of a statistica
ensemble allows average properties of the disordered Ha
tonian to be formulated in the framework of a quantum fie
theory of nonlinears-model type (NLsM) valid in the limit
g@1. Here, the dimensionless conductanceg denotes a non-
universal parameter which depends on the deterministic
of the Hamiltonian H0—and through it on the sampl
geometry—as well as on details of the distribution ofHdis.
By contrast, properties of an individual system are much l
amenable to treatment by means of a statistical field the
and, despite recent encouraging progress@6#, a convincing
formal proof of the BGS conjecture is lacking. The existen
of a proof of Wigner-Dyson statistics in quantum disorder
systems generates a dichotomy of approaches: if univers
is assumedor established by other means, RMT calculatio
©2003 The American Physical Society17-1
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can be employed to obtain specific answers. On the o
hand, NLsM calculations often represent the only availab
route toestablishuniversality and to explore deviations from
it ~typically as expansions in 1/g).

A corollary of the above universality is the fact that, ap
form a possible modification of the average DoSD̄21, the
spectral statistics ofH5H01Hdis andHV5H01Hdis1V are
indistinguishable@7# unlessV is so large thatH01Hdis gen-
erate only perturbative corrections to its eigenvalues~the
same condition, of course, applies to the relation betweenH0
and Hdis). Such universality dictates that the statistics
spectral lines tracing the evolution of eigenvalues as fu
tions of a coordinateX along a typical curve in the Hamil
tonian space connectingH0 to H01V must possess som
kind of stationarity@8#. This stationarity is reflected, in turn
in the universality of parametric spectral correlations@9#
~i.e., cross correlations between the spectra ofH and HV
averaged over the realizations ofHdis). Indeed, as first
pointed out in Refs.@10–12#, for a broad class ofV’s the
parametric spectral correlators are expressed via anothe
of universal functions~again determined only by the symm
try of the Hamiltonian ensemble! which depend, in addition
to the level density, on asingle extra nonuniversa
parameter—the dispersionC(0) of the distribution of level
velocities D̄21]« i /]X[D̄21]X« i , where « i is a typical
eigenlevel ofH. @The use of the notationC(0) for the dis-
persion of the distribution of level velocities is explained
the fact that it is the limiting value of the level velocit
correlation functionC(X)5D̄22^] X̄« i(X̄)] X̄« i(X̄1X)& @10–
12#.# If the curve is a ‘‘straight line’’H1XV, the rescaled
parameter

x05XAC~0! ~4!

is an effective measure of the strength ofXV. Equation~4!
is, in essence, a relation between two phenomenologica
rameters,x0 and C(0). It is supplemented by a ‘‘micro-
scopic’’ definition ofx0 in terms ofXV @10,12#,

x0
25

8

D̄2
X2^^VPV&&, ~5!

where the double angle brackets denote the matrix elem
of P on the vector space spanned byV, and the definition of
the ~nonuniversal! operatorP strongly depends onH0 and
the distribution ofHdis. In a disordered metal,P becomes a
resolvent of the diffusion operator@10,12#, and, if V is diag-
onal in the coordinate representation, the matrix elem
simplifies to ^^VPV&&5L22d*drdr 8V(r )P(r ,r 8)V(r 8),
whereP(r ,r 8) is the matrix element ofP in the coordinate
basis,L is the linear size of the sample, andd is its dimen-
sionality. The parameterx0 can be thought of as a scala
norm ~in the space of Hamiltonians! of the ‘‘distance’’ be-
tween H and H1XV, and Eq.~5! can correspondingly be
viewed as fixing a particular prescription for the norm.

The importance of Eq.~4! is underscored by the fact tha
in practice, measuringV directly is often impossible or very
difficult, and the Green function of the diffusion operator
03621
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itself a complicated object in an irregularly shaped samp
Consequently, direct evaluation of Eq.~5! is seldom feasible.
On the other hand, collecting statistics on level velocities
relatively straightforward, so that Eq.~4! is the only link
between the formal parameterx0 and an experimentally mea
surable quantity.

~A brief remark on notation: we denote the paramet
perturbation asXV whenever the emphasis is on the contin
ous evolution of the spectrum ofH1XV as a function ofX
along a ‘‘straight line’’ 0<X<1. In what follows nonlinear
parameter dependence ofV will become important, so it will
be convenient to revert to denoting the perturbation asV with
its parameter dependence implicit from the context.!

The ‘‘broad class ofV’s’’ which was referred to above is
distinguished by the following properties. First of all, th
main feature of the class ofV’s to which the theory of Refs.
@10,12# applies is that the level velocity distribution i
Gaussian, and is thus fully characterized by its second cu
lant. It is, of course, generic in some sense, as the Gaus
ity of the level velocity distribution is the result of the centr
limit theorem which comes into force for anyV which is
global, or extended, i.e., whenV is a generic ‘‘full’’ matrix in
the Hilbert space defined by a typical realization ofH0
1Hdis ~a more formal definition is trV4/(trV2)2→0 in the
thermodynamic limit!. In application to disordered metals
such perturbations are easily realized as, e.g., inhomo
neous electric or magnetic fields acting on the whole, o
substantial part of, the sample volume.

Second, the fact thatx0 is linear inX implies thatV is, in
some sense, small. More precisely, individual matrix e
ments ofV are small as compared to the mean level spac
D̄, even as the overall effect ofV is finite due to its global
extent. It cannot be too strongly emphasized that, for a glo
perturbation, the requirement that its matrix elements
small is not an artificial constraint, but a self-consistent co
dition for the existence of finite correlations between t
spectra ofH and H1V: if this condition is violated, the
spectrum ofH1V is so ‘‘scrambled’’ with respect to the
spectrum ofH that the residual correlations vanish as inve
powers of the system volume.

There exists, however, a class of perturbationsV which do
not quite fall into the paradigm of Refs.@10,12#. In many
practical applications, for example,V cannot be character
ized as extended. A bistable defect jumping between
nearby configurations, a local STM tip, defects created un
irradiation, etc., belong to a very different type of a pertur
ing Hamiltonian. On an intuitive level they are easily seen
be ‘‘local,’’ and formally trV4/(trV2)2 is finite for such per-
turbations. Even more crucially, the corresponding distrib
tion of level velocities is not Gaussian@e.g., it is Poissonian
for a moving local defect in a disordered metal forb52, see
Eq. ~24! below#, so the results of Refs.@10,12# need to be
modified.

Parametric spectral correlations induced by nonexten
perturbing potentials have been studied previously in
RMT framework@13–15#, leading to a comprehensive set
results for a large class of parametric correlation functions
the unitary ensemble. As noted above, the use of RMT p
7-2
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supposes universality. At the same time, matrix elements
local perturbation need not be small. As a typical examp
let us consider the potential arising in the x-ray emissi
absorption spectra in disordered metals, and the assoc
issue of Anderson orthogonality catastrophe@16#. The poten-
tial U(r ) of a charged ion created after an electron has b
knocked out of an inner shell by a photon may typically ha
a magnitude comparable to the Fermi energy«F, and a spa-
tial extent of the order of the Fermi wavelengthlF
52p/pF . For comparison, an example of a global poten
to which analysis of Refs.@10,12# fully applies is external
magnetic field generating a unit of flux through the sam
area. The corresponding effective potential is easily e
mated as (e/mc)pA;«F /pFL, whereA is the vector poten-
tial. In the former case, the potential, although spatially
calized, is larger by a factor of square root of the sam
volume~in d52 dimensions!. The qualitative difference be
tween the two types of perturbations is vividly illustrated
Figs. 1 and 2 which depict the evolution of a set of levels
a typical realization ofH01Hdis1XV as a function ofX for
the cases of global and local perturbations, respectiv
Note, for example, that in the case of a local perturbati
even very large values ofX do not lead to a complete
‘‘scrambling’’ of the spectrum.

Given these qualitative differences, the universality of
corresponding parametric correlations cannot be autom
cally deduced from the analysis of Refs.@10,12#. In this pa-
per, we utilize the NLsM approach to prove the universalit
of the results in Refs.@13–15# and to establish their limits o
applicability and, crucially, their parametrization in terms
non-universal (H0-dependent! quantities. We also establish
precise criterion for the crossover between the locali
@13,15# and extended@10,12# regimes. The NLsM also af-
fords an extension of some of the previously obtained res
to the orthogonal ensemble, although a complete counter
of the results of Refs.@13–15# in the orthogonal case is un
attainable at present.

FIG. 1. Parametric dependence of the energy levels of a ti
binding Anderson Hamiltonian on a 20320 lattice as a function of
the strengthX of a fixed global perturbation~arbitrary units!. To
place the system in the unitary symmetry class, we have impose
external random vector potential in addition to the random sc
potential.
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II. PARAMETRIC SPECTRAL
CORRELATION FUNCTIONS

The parametric analog of Eq.~1!—and the basic object to
which we devote most of the attention in this paper—is
cross-correlation function

R11~V,V!5D̄2^n~«1V/2;0!n~«2V/2;V!&, ~6!

wheren(«;V)5trd(«2H2V). The notation is dictated by
the fact thatR11 is the special case of the multipoint corr
lation function Rnm involving n densitiesn(« i ;0) and m
‘‘shifted’’ densities n(« j ;V). ~Within this classification
scheme,R2 is more properly denoted asR20.) Its universal
form ~in the case of random Hamiltonians of unitary symm
try! is given, as established in Refs.@10,12# for global V, by
the following expression:

R11~s,V!215
1

2
ReE

1

`

dl1E
21

1

dleips1(l12l)2s(l,l1 ;x0),

~7!

where

s~l,l1 ;x0![sgl~l,l1 ;x0!5p2x0
2~l1

22l2!/2, ~8!

and x0 is given by Eq.~5!. Note that the resolvent of the
diffusion operatorP(r ,r 8) is a long-range object, so that th
extended character ofV is essential in the structure of Eq
~5!. Note also thatP is smooth on the scale of the mean fr
path,, suppressing the contribution of the fast compone
of V to Eq. ~5!.

The basic conclusion of the analysis presented in this
per is that in the case of a local perturbation~or a perturba-
tion which has both global and local components! the overall
structure of Eq. ~7! is preserved, while the function
s(l,l1 ;x0) is generalized to

s~l,l1 ;x0 ,x!5sgl~l,l1 ;x0!1s loc~l,l1 ;x!,

t-

an
r

FIG. 2. Parametric dependence of the energy levels of a ti
reversal-invariant tight-binding Anderson Hamiltonian on a
320 lattice as a function of the overall strengthX of an external
perturbation localized on two fixed sites~arbitrary units!.
7-3
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s loc~l,l1 ;x!5 (
a51

r

@ ln~11 ixal1!2 ln~11 ixal!#, ~9!

where the ‘‘local’’ part s loc of s depends on a vector o
parametersx. The vectorx has a finite numberr of compo-
nents, reflecting the finite extent of the local component oV.
We also find an additional contribution tox0

2, which properly
accounts for the fast spatial oscillations in the extended p
of V,

dx0
254n̄2E drdr 8V~r ! f d

2~r2r 8!V~r 8!X2, ~10!

wheren̄51/D̄Ld is the average local DoS in ad-dimensional
sample. The Friedel functionf d(r ) represents the average
Green function of a disordered system, and is given by

f d~r !5Jd/221~pFr !e2r /2,, ~11!

whereJh is the Bessel function ofhth order.
In what sense is Eq.~9! universal, depending, as it doe

on a whole list of parameters? To answer this question
needs to clarify whether analogs of Eq.~4! can be defined,
i.e., whether these correlation functions are determined b
~at most finite! set of phenomenological parameters rath
than the thermodynamically large number of variables in
pair of matricesH0 andV.

As will be explained shortly,xa are nonlinear functions o
XV. In other words, the transformation analogous to Eq.~4!,
if it exists at all, isnonlinear—in contrast to the simple res
caling required in the global case. The nonlinearity me
that, unlike the case of a global perturbation, the ove
magnitude of the perturbationX is no longer a ‘‘natural’’
variable with respect to which level velocity should be d
fined. It is not evena priori clear that such a ‘‘natural’’
variable exists.

There is, however, an extra requirement that can be
posed to make the parametrization unique. To help motiv
it, let us note that, in the global case,s as a function ofx0 is
essentially a Taylor expansion where terms of the or
higher than 2 vanish in the thermodynamic limit. As a res
correlation functions betweenH1X1V andH1X2V for ar-
bitrary X1 and X2 are functions of the~properly rescaled!
differenceX22X1. This translationally invariant parametr
zation is a direct consequence—in fact, the prima
manifestation—of the principle of stationarity discussed
the Introduction. On general grounds, such stationa
should characterize parametric correlations induced by lo
perturbations as well. Thus, there must exist a ‘‘natural’’
of variablesy(x) possessing the following property: there
at least one curve connectingH0 and H01V such that the
correlations between any two Hamiltonians on this cu
corresponding to two different valuesX1 and X2 are func-
tions of the differencesy(x2)2y(x1). The distribution of
level velocities along this curve is independent of the po
tion on the curve. In fact, forr .1, such curves are no
unique, but rather span anr-dimensional manifold.

It is worth emphasizing that the existence of such para
etrization is a nontrivial property even for a single parame
03621
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(r 51). For example, let us consider an arbitrary functi
f (X1 ,X2). The existence of a ‘‘natural’’ set of variables
equivalent to the requirement that forany X1 and X2 the
function f (X1 ,X2) can be represented asg„h(X2)2h(X1)…
for some functionsg and h. Such a representation clear
exists only for a very restricted subset of all possiblef. As
follows from the analysis below, the ‘‘natural’’ parametriza
tion does indeed exist, and it is effected by the substituti

ya5arctanxa . ~12!

As will be shown in Sec. III,xa are the eigenvalues of th
reactance matrix

R[ i ~S21!~S11!21, ~13!

where the scattering matrixS describes scattering offV with
free propagation controlled by the Green function ofH
5H01Hdis averaged overHdis. The emergence of the reac
tance matrix as a key object governing parametric corre
tions is rather natural within the formal framework presen
in the subsequent section. However, it is less obvious on
intuitive level, especially so since the reactance matrix
used much less frequently in the scattering theory pro
than its ‘‘cousin’’ theT matrix ~a very detailed exposition o
the subject can be found, however, in Ref.@17#!. Neverthe-
less, it can be qualitatively understood based precisely on
fact that reactance matrix is the Hermitian analog of theT
matrix. Indeed, the latter is conventionally defined by t
equationVuxout&5T ux0&, where ux0& is the incident plane
wave, anduxout& is the scattered wave, normalized tounit
flux. Similarly, R satisfies an equation of identical structur
VuwV&5Ruw0&, where uwV& and uw0& are now the conven-
tionally normalized, respectively, perturbed, and unp
turbed, states in aclosed system. Since we consider the para
metric correlations of the real eigenvalues of Hermiti
Hamiltonians in closed systems, reactance matrix is ind
quite a natural object to appear.

The eigenvalues ofR are expressed as tangents of t
corresponding eigenphases~scattering phase shifts! of S.
The parametersya introduced in Eq.~12! thus have an intui-
tive physical interpretation as the corresponding phase sh
The expression ofxa ~or ya) in terms of the reactance matri
should be regarded as the analog of the microscopic de
tion of x0 given by Eq.~5!. Moreover, the fact that the ‘‘natu
ral’’ parameters are the eigenvalues of the corresponding
actance matrix allows for a more direct definition of th
special set of curves in the space of Hamiltonians wh
were discussed above. These curves can now be repres
as sequences of Hamiltonians which map ontocommuting
sequences of reactance matrices.

It is possible to complete the analogy with the case
extended perturbations by establishing a counterpart of
~4!. The distributionP(u) of level velocitiesu5]« i /]uyu
can be extracted from Eq.~9! with the help of the identity
@18#

P~u!5 lim
uyu→0

uyuR11~V/D̄5uuyu,y!. ~14!
7-4
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Making use of this identity, one obtains the following resu

P~u!5ReE
0

`

dzeipu1z expF2(
a

r

ln~11 i zka!G , ~15!

whereka5ya /uyu. Thus, the cumulantsCm of the level ve-
locity are given by

Cm5
~m21!!

pm (
a51

r

ka
m . ~16!

By choosinguyu as the variable, we have already effective
performed a rescaling analogous to Eq.~4! ~up to a factor of
p), with C2[C(0). Any set ofadditionalr 21 cumulants is
sufficient to invert Eq.~16!, thus providing the remaining
~nonlinear! variable transformations between phenome
logical constantsCm and universal parametersya . Equation
~16! establishes the universality of Eq.~9!.

Although we have kept the discussion above rather g
eral, the most interesting application from the practical po
view is whenV is diagonal in the coordinate representatio
andH0 andHdis together describe weakly disordered meta
The latter are characterized by the hierarchy of scalesL@,
@lF . In this case it is convenient to distinguish two su
types of local perturbationsV. In the first subtype, the spatia
extentl V of V is smaller than,. For such perturbing poten
tials, Eq.~9! can be more compactly rewritten as

s loc~l,l1 ;x!5tr~11 iRl1!~11 iRl!21, ~17!

where R is the reactance matrix projected onto the Fer
surface, and tr denotes the trace in the space of the scatt
channels. The full reactance matrix is defined by the equa

R5~12VRê GR&!21V,

where the retarded average Green function is defined
^GR&[^(«F2H02Hdis1 i0)21&, so thatR is formally dis-
tinct from the average reactance matrix ^(1
2VReGR)21V&; nevertheless, the difference betweenR and
the average reactance matrix enters only in the sublea
order inlF /,, and can be ignored. Transforming to the m
mentum representation it is convenient to split off the an
lar variables inR as R(p,p8)5R(j,n̂;j8,n̂8), where j
5p2/2m2«F . The projected reactance matrixR is defined
asRn̂,n̂8[pn̄R(0,n̂;0,n̂8).

In the opposite limitL@ l V@,, Eq. ~17! retains its struc-
ture providedR is replaced with

RP5P1/2~j!R~j,n̂;j8,n̂8!P1/2~j8!,

where

P~j!5
~1/2pt!

j21~1/2t!2
,

t5,/vF is the mean free time, and the trace operation t
redefined to include thej degrees of freedom. In othe
words, the projection onto the Fermi surface is smeared o
03621
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a strip of width 1/2t around it, reflecting the fact that th
averageGreen function exponentially decays over distanc
larger than, so that a scatterer of size larger than, is effec-
tively split into independent chunks of size,. Since the al-
gebraic structure of the parametric correlation functions
identical in both casesl V,, andl V.,, below we will often
omit the subscriptP.

In summary, the two ways of definingy either in terms of
the solutions of Eq.~16! or as the eigenphases of the rea
tance matrix stand in direct correspondence with the defi
tion of x0 either phenomenologically~4! or microscopically
~5!. While very convenient for theoretical analysis, the de
nition in terms of the eigenphases is of little practical utili
since measuringR is hardly feasible. On the other han
cumulants of the level velocity distribution are readily acce
sible in appropriately designed experiments.

The universality of the parametric correlation functions
explicitly demonstrated through the existence of theirtrans-
lationally invariant parametrization in terms of the scatte
ing phase shifts.In this context, the standard univers
Wigner-Dyson statistics of energy levels~spectral points!
could be viewed as theboundary conditionto the universal
statistics ofspectral linesas functions of coordinates in th
space of Hamiltonians.

A. Orthogonal ensemble

All of the preceding discussion can be applied verbatim
the case of orthogonal symmetry provided Eqs.~7! and~17!
are replaced with

R11
(o)~s,V!511ReE

1

`

dl1dl2E
21

1

dlJ~l,l1 ,l2!

3eips1(l1l22l)2s(o)(l,l1 ,l2 ;x0 ,x), ~18!

where

J~l,l1 ,l2!5
~l1l22l!2~12l2!

~l1
21l2

21l222ll1l221!2

and the global and local parts ofs (o) are given by, respec
tively,

sgl
(o)~l,l1 ,l2 ;x0!5

p2x0
2

2
~112l1

2l2
22l22l1

22l2
2!

and

s loc
(o)~l,l1 ,l2 ;x!5

1

2
tr ln

112iRl1l22R 2~l1
21l2

221!

~11 iRl!2
.

~19!

As before,R has to be replaced withRP with the corre-
sponding redefinition of tr ifl V@,.

A similar set of expressions can also be written in t
symplectic (b54) case.
7-5
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B. Level velocity distribution and Berry’s conjecture

Applying Eq. ~14! to Eq. ~18!, we find that Eq.~15! is a
special case of a more general expression,

P~u!5
b

2
ReE

0

`

dzeipbu1z/2 expF2
b

2(a

r

ln~11 i zka!G .

~20!

It is interesting to note that the distribution of level velociti
can be obtained using a completely different approach.
can be easily seen from the expansion of an arbitrary eig
value« i of H1XV to linear order inX,

« i~X!.« i1XVii 1O~X2!,

Vii 5E dr uc i~r !u2V~r !,

the level velocity coincides with the expectation value ofV
in the i th eigenstate ofH. Restricting our attention for sim
plicity to the casel V!,, we can employ Berry’s conjectur
about the distribution of wave function values in chaotic s
tems@19,20#:

P@c#5

expF2
b

2E drdr 8c†~r !@ f̂ 21# rr 8c~r 8!G
~detf̂ 21!b/2

,

where in d spatial dimensions the matrix elements of t
integral operatorf̂ are given by the Friedel function~11!,
which in the limit l V!, can be approximated asf d(r2r 8)
[*dneipFn•(r2r8)5Jd/221(pFr ). In this expression the inte
gration is performed over all directions of the unit vectorn
andr 5ur2r 8u. The fieldsc are complex in the unitary case
and real forb51. While originally conjecturedfor chaotic
systems@19#, this expression was recentlyproved @20# to
hold locally in diffusive systems of unitary symmetry. W
thus immediately find

P~u!5D̄(
i

^d~u2Vii /D̄ !d~«2« i !&

5E
2`

1` dz

2pE Dc iP@c i #e
iuz2 i z*dr uc i (r )u2V(r )/D̄

5E
2`

` dz

2p
ei zu

1

@det~112i z f̂ V/bD̄!#b/2
. ~21!

The last expression can be shown to coincide with Eq.~20!,
thus indirectly confirming the validity of Berry’s conjectur
in diffusive systems of orthogonal symmetry. Indeed,ya /uyu
coincide with the eigenvalues of the Fermi surface project
of dR/dXuX→0[V. The corresponding projected matrix e
ements are*dr eipF(n2n8)•rV(r ). Using the integral decom
position of f d(r2r 8) and the cyclic invariance of the dete
minant, the equivalence of Eqs.~20! and~21! is immediately
03621
s
n-

-

n

established. This analysis can also be in an obvious w
extended to the caseL@ l V@,.

C. Examples

Before turning to derivation of the above results, it
instructive to analyze several special cases. For example,V
models a collection of several impurities, it can be appro
mated as

V~r !5
1

n̄
(
k51

r

vkd~r2r k!. ~22!

Crudely speaking, a bistable impurity would haver 52 and
v152v2, while a local defect created, e.g., by irradiatio
would correspond tor 51.

Throughout this subsection we largely restrict the disc
sion to the unitary ensemble. The corresponding results
b51 can be straightforwardly obtained in terms of the c
respondingl integrals starting from Eq.~19!.

Despite the fact thatR ~or RP) is a continuous integra
operator, the structure of Eq.~22! ensures that it possesse
exactlyr nonzero eigenvalues. Using the cyclic invariance
the trace, the latter are easily seen to coincide with the
genvalues of the asymmetric matrix Mkk9
5(k851

r R(r k ,r k8) f d(r k82r k9), where, for arbitraryl V!L,
the Friedel functionf d(r ) is given by Eq.~11!.

In the simplest r 51 case, Mkk8 is a number, tany
5v/(12av), where for brevity we denotea5Rê GR(r
50)&/ n̄, and the correlation function in the unitary ensemb
can be explicitly written in the form~assumingy.0)

R11~s,y!2152H ]

]s
@e2pscotyk~s!#J Fu~s!

2E
2`

s

ds8eps8cot yk~s8!G , ~23!

where the functionk(s) has been defined in Eq.~3!, there-
fore reproducing the result obtained previously@21# using
RMT methods. The functionR11 for r 51 is plotted in Fig. 3
for several different values ofy together with its Fourier
transform. One can clearly see the gradual broadening of
central peak inherited from thed-function term in Eq.~2!. At
small values ofy the dominant contribution to the broadene
peak comes from the correlations between a level and
parametric ‘‘descendant.’’ It is also worth noting that th
parametric correlation function inherits from its nonparam
ric limit the sharp oscillatory behavior which is reflected
the singularity~cusp! in its Fourier transform

R11~ t,y!5E
2`

`

dse22p istR11~s,y!5d~ t !1min~ t,1!

1
t

2
lnF 11tan2yg2~ t !

11tan2y~112t !2G ,
7-6
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whereg(t)52t22min(t,1)11. Although not directly obvi-
ous from Eq.~23!, the perturbed levels in ther 51 case
possess the property~for y.0) « i,« i(y),« i 11 @21#. This
feature is clearly illustrated in Fig. 4.

In the r 52 case we restrict our attention to modeling
bistable impurity, thus settingv152v25v.0, and r 12

!,. Denoting as beforea5Rê GR(r50)&/ n̄, and alsog

5Rê GR(r 21)&/ n̄, r kk85ur k2r k8u, and f kk85 f d(r kk8), we
find

tany1,25
v2~a2g f 12!6vA12 f 12

2 1v2~a f 122g!2

12v2~g22a2!
.

FIG. 3. DOS-DOS correlation function for the rankr 51 prob-
lem, R11(s,y), for different strengths tany of the perturbing poten-
tial: tany50.2 ~dashed line!, tany50.8 ~dotted line!, tany54 ~dot-
dashed line!, tany→` ~solid line!, while the bold line correspond
to the GUE Wigner-Dyson result,y50. The corresponding Fourie
transforms are shown in the inset.

FIG. 4. Dependence of the energy levels on the overall stren
X of an externallocal ~i.e., localized on a single site! perturbationV
for a time-reversal invariant tight-binding 20320 lattice model~ar-
bitrary units!. Level anticrossing and the property« i,« i(X)
,« i 11 @21# are clearly shown.
03621
In the limit r 12→0 both eigenvalues, as expected, vanish.
omit somewhat lengthy explicit expressions forR11 and its
Fourier transform, presenting instead in Fig. 5 the cor
sponding graphs at several different values ofy. The limit
r 12→0 can also be used to extract the distribution of le
velocities due to a moving impurity. Expanding 12 f 12

'(1/2d)pF
2r 2 we find ~setting for simplicitya5g50) that

the distribution ofu5]« i /](pFr ) is Poissonian:

P~u!5
Ad

2v
e2uuuAd/v. ~24!

This result can be generalized to study the response o
energy levels to a shift in the position of an extended defe
An experimentally relevant application is the lateral moti
of an STM tip over a disordered two-dimensional electr
gas. Another example is a metallic scatterer inside a mic
wave ‘billiard’ such as those studied in Ref.@22#.

Approximating the potentialU of an STM tip as a flat
disk of radiusr, U(r )5U0u(r22r2), and denoting the dis-
placement of the center of the disk asl, the difference be-
tween the potentials produced at two adjacent positions
the disk is given, to the first order inl, by V(r )[V(r ,f)
52U0lrd(r22r2)cosf, where the direction of the dis
placement corresponds tof50. Therefore, neglecting the
O(U0) corrections tof d(r )5J0(pFr ), one finds that the op-
erator f̂ V/D̄ appearing in the expression for the velocity d
tribution ~21! reduces to a continuous integral operator d
fined on a circle 0<f,2p:

k~f,f8!5
1

2p
J0~2pFrsin@~f2f8!/2# !cosf8.

Since the corresponding eigenvalueska are symmetric with
respect to zero, the distribution of level velocities can
written as

th

FIG. 5. DOS-DOS correlation function for the rankr 52 prob-
lem, R11(s,y), for different values of tany5tany152tany2. The
bold line corresponds to the GUE Wigner-Dyson result, tany50,
while tany50.2 ~dashed line!, tany50.4 ~dotted line!, tany51
~dot-dashed line!, tany→` ~solid line!. The corresponding Fourie
transforms are shown in the inset.
7-7
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PSTM~u/ū!5E
2`

` dz

2p
expH i z~u/ū!2

b

2 (
ka.0

ln@1

1~2kaz/bū!2#J ,

where the average velocityū is given by

ū2[^u2&5
2

b (
a

ka
25

1

bpE0

p

duJ0
2~2pFr sinu!cos~2u!.

In the unitary case,b52, the distribution function~Fig. 6!
shows a crossover from Poisson to Gaussian behavior aspFr
increases, while in the orthogonal case~Fig. 7! the crossover
is between the limiting behavior described by the modifi

FIG. 6. Graph ofPSTM(u/ū) in the unitary ensemble obtaine
for pFr51.5 and 4.0 together with the limiting cases of Poiss
(pFr→0) and Gaussian (pFr→`) distributions. The inset show
the perturbationV(r ) arising from the displacement of the disk
shaped potential.

FIG. 7. Graph ofPSTM(u/ū) in the orthogonal ensemble ob
tained forpFr51.8 andpFr55 together with the limiting cases o

pFr→0 andpFr→`. The inset showsū5^u2&1/2 as a function of
pFr.
03621
d

Bessel function (1/p)K0(uuu) @23# and the Gaussian limit
These crossovers explicitly illustrate the distinction betwe
local and global perturbations, and show that the global
gime is achieved when the central limit theorem comes i
force due to a large number of distinct eigenvalueska . Such
a crossover has been observed in experiments on microw
resonators@23# where the appropriate ensemble is orthog
nal.

A distinctive feature appearing in this example is tha
local potential is described by a formally infinite number
the eigenvalueska of an integral operator. However, the fi
nite extent ofV guarantees that all but a finite number
these eigenvalues are vanishingly small, so that, depen
on the required degree of accuracy, there can always be
fined an appropriatefinite value of r.

III. FIELD THEORY OF PARAMETRIC CORRELATIONS

We turn now to the derivation of the results presented
the preceding section. To explore the influence of a lo
potential perturbation on the ensemble average propertie
the weakly disordered system, we will employ a conve
tional approach based on the supersymmetric field-theor
formulation. Since this approach has been reviewed ex
sively in the literature@4#, we will keep our discussion her
concise, paying particular attention only to the idiosyncras
of the present scheme.

Focusing on the weakly disordered system, our start
point is the set of single-particle Hamiltonians

Hi5 ĵ p̂2eA1U~r !1Vi~r !,

where ĵ p̂2eA5(p̂2eA)2/2m2«F is the kinetic energy op-
erator, a free-particle system subject to an external ve
potentialA. The impurity potentialU(r ) is drawn at random
from a Gaussiand-correlated distribution with zero mean
and variance

^U~r !U~r 8!&5
1

2pn̄ t
d~r2r 8!, ~25!

wheret is the associated elastic mean free time,t5,/vF . In
the following, we will limit our considerations to the diffu
sive regime, where the sample sizeL is greatly in excess of
the mean free path, and where the wave function is ex
tended over the volume of the system. Moreover, the ene
scales are arranged in the hierarchy

«F@
1

t
@Ec@D̄,

with Ec5D/L2 and D5vF
2t/d. In addition to the random

potentialU(r ), the diffusive system is subject to a furthe
~potentially short-ranged! arbitrary external parametric per
turbation which can taken valuesVi(r ).

Our goal initially is to construct a formalism which a
lows, at least in principle~see below!, to compute multipoint
correlation functions of the DOS,
7-8
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R~«;V!5K )
i 51

p

n~« i ;Vi !L , ~26!

where « and V denotep-dimensional vectors with compo
nents« i and Vi , respectively, andn(« i ;Vi) is the value of
the density of states at energy« i of the Hamiltonianĵ p̂1U
1Vi . For generality, let us assume thatp>n, so that some
of Vi in Eq. ~26! are equal. Thep energies in« ~which are
generically different! are correspondingly split inton groups
of size pj , each group matching a given valueVj . More-
over, from now on, we assume that the Fermi energy«F ,
which is included in the free Hamiltonianĵ p̂ , is subtracted
from the energies« i .

According to the standard methods@4,12#, the generating
functional required to construct a field-theoretic represen
tion of R(«;V) in the case of unbroken time-reversal sym
metry is written as a functional integral over a
8p-dimensional supermultiplet of complex fields:

Z@ j #5E D~c†,c!expH i E dr$C̄@ «̂ c2 ĵ p̂2U~ r!

2 V̂ ~ r!#C1C† j 1 j †C% , ~27!

where, by choosing the fieldsc to consist of 2p copies of
both boson~B! and fermion~F! elements, the normalizatio
of the generating function,Z@0#51 is enforced. The factor 2
in 2p is explained by the need to generate both retarded~R!
and advanced~A! Green functions, so that« i

c5(« is0
RA

1s3
RAi0)^ s0

BF
^ s0

TR . The further doubling of the numbe
of components of the superfields is dictated by the nee
properly take into account the soft modes associated with
time-reversal invariance of the Hamiltonian~hence the nota-
tion TR for the corresponding subspace!:

C5
1

A2
S c

c* D
TR

, C†5~CC!T, C5C~C†!T,

whereC5s1
TR

^ E11
BF1 is2

TRE22
BF , and theE matrices are the

projectors onto the corresponding parts of the superspace
stay close to the conventional notation adopted in the lite
ture, in the following we will denotes3

RA[L. The conjugate

superfields are defined byc̄5c†L, where L5L ^ E11
BF11

^ E22
BF ~further details on notation can be found in Ref.@4#!.

Finally, «̂ c5diag(«1
c , . . . ,«p

c), V̂ 5diag(V1 , . . . ,Vp),
and the absence of an explicit operator in any subspace
ways implies the corresponding identity operator.

The only exception to this structure is the casep52,
where it is sufficient to represent each of the two DOS f
tors by either a retarded or an advanced Green function,
the opposite choice for the remaining factor, thus reduc
the number of required components of the superfields fr
16
to 8.

An ensemble average of the generating functionalZ@ j #
over realizations of the random impurity potentialU(r ) in-
duces a quartic interaction of the fieldsC, which can be
03621
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decoupled by means of a Hubbard-Stratonovich transfor
tion with the introduction of 8p38p-component superma
trix fields Q(r ). In the absence of symmetry breakin
sources, the resulting action is invariant under pseudouni
transformations,Q°TQT21, where T satisfiesT†LT5L,
and thus belongs to the pseudounitary supergr
U(2p,2pu4p). Moreover,Q satisfies the time-reversal sym
metry constraintQ5LCTQ TCL.

After performing the integration over the superfieldsC,
one obtains the ensemble-averaged generating functiona

^Z@0#&5E DQe2S[Q] ,

where the actionS@Q# is

S@Q#52
pn̄

8t E drstrQ 21
1

2E drstr̂ r u ln G21ur &, ~28!

and

G 21@Q; V̂ #5 «̂ c2 ĵ p̂2 V̂ ~r !1
i

2t
Q~r !

denotes the supermatrix Green function. The description
the structure of supermatrices and the definition of the su
trace~here, str5trB2trF) operation can be found in Ref.@4#.

The action~28! possesses an almost degenerate sad
point manifold. Varying the action with respect toQ, one
obtains the saddle-point equation

Q~r !5
i

pn̄
^r uG@Q; V̂ #ur &. ~29!

This equation can be interpreted as the self-consistent B
approximation for the self-energy of the supermatrix Gre
function. The ambiguity involved in choosing among the d
ferent disconnected solutions of this equation is resolved
taking into account the analytical properties of the avera
Green function:Q5L. In the limit «̂ →0 and V̂ →0, the
saddle-point solution expands to fill the degenerate mani
generated by transformationsQ5TLT21, where T
PU(2p,2pu4p).

A. The nonlinear s-model

In the standard scheme@4# leading to the NLsM structure
of the field theory, the fluctuations ofQ in the direction
perpendicular to the saddle-point manifold are massive
to the inequalitypF,@1. Moreover, in the leading order in
1/pF,, these fluctuations are quadratic and independen
the transverse fluctuations. As a result, integration over
massive modes does not lead to any modifications of
saddle-point action apart from an overall constant multip
ing Z; supersymmetry further ensures that the constan
equal to 1. In the case of global parametric perturbations
scheme is preserved@10,12# due to the fact thatV(r ) is lo-
cally small, as discussed above. However, it is nota priori
obvious that the same is true in the case of local pertur
7-9
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tions, since the latter are locally large. Therefore, care ha
be exercised in the derivation of the parametric version
NLsM to demonstrate that~i! local perturbations do not de
stroy locally the saddle-point structure~i.e., the distinction
between the massless transverse and massive longitu
fluctuations is preserved!, and ~ii ! that any possible cros
couplings between massive and soft modes mediated byV do
not modify the saddle-point action in the leading order
1/pF,.

To undertake this program, we begin by separating
fluctuations around the saddle-point manifold into transve
modesQ(r ), which are nearly massless and slowly varyi
on the scale of the mean free path,, and massive mode
dQm(r ), in such a way thatQ(r )5Q(r )1dQm(r ). The lat-
ter include the longitudinal fluctuationsdQl as well asfast
transverse fluctuationsdQf . The need to account for fas
transverse fluctuations arises from the fact that local per
bations vary rapidly on the scale of the wavelengthlF , so
that their coupling to fast transverse modes cannota priori
be ignored. In principle, a naive inclusion of fast transve
fluctuations can lead to overcounting, as, e.g., a 2pF diffu-
sion propagator mode is a Cooper propagator, and vice ve
Nevertheless, below we will demonstrate that massive mo
do not in fact generate any corrections to the slow mo
action in the leading order in 1/pF,, and a detailed calcula
tion of the subleading terms is not needed.

By definition, the longitudinal modes are orthogonal
the saddle-point manifold, therefore satisfyin
@dQl(r ),Q(r )#50. In contrast, the slow transverse mod
can be parametrized asQ(r )5T(r )LT21(r ). The corre-
sponding free supermatrix Green function,G0@Q#5G@ «̂ c

50,dQm50; V̂ 50#, obeys the relation:

G0~r ,r 8!5Rê GR~r ,r 8!&2 ipn̄ f d~r2r 8!QS r1r 8
2 D ,

where the retarded Green function is defined asGR5(2 ĵ p̂
2U1 i0)21 and wheref d(r2r 8) denotes the Friedel func
tion ~11!.

Separating theV-dependent parts of the action, we repr
sent it as

S@Q#5S@Q#1dS@Q,dQm#,

where

S@Q#52
pn̄

8t E dr strQ21
1

2E drstr^r u ln G 21@Q#ur &

1
1

2E dr str^r u ln~12G@Q# V̂ !ur &, ~30!

G@Q#[G@Q; V̂ 50#, and the expansion
03621
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G@Q#5G@Q#2
i

2t
G@Q#dQmG@Q#

2
1

~2t!2
G@Q#dQmG@Q#dQmG@Q#

determines the form ofdS@Q,dQm#. In the limit «̂ t!1 the
cross coupling between«̂ c and V̂ can be neglected, so tha
G@Q# in the last term in Eq.~30! can be replaced with
G0@Q#.

Employing the condition«Ft@1, a gradient expansion o
the first two terms in Eq.~30! leads to the conventional non
linear s-model action

S0@Q#52
pn̄

8 E dr str@D~¹Q!214i «̂ Q#.

Using the identity str ln (12Rê GR& V̂ )50, the last term in
Eq. ~30! can be rewritten as

SV@Q#5
1

2
str ln~11 iQ _R_̂ !, ~31!

where the operation str is assumed to include the trace
the scattering channels’ degrees of freedom. Simila
dS@Q,dQm# takes the form

dS@Q,dQm#52
pn̄

8t
strdQl

21dS0@Q,dQf #1
1

2
str lnH 1

1
i

2pn̄t
G0@Q#dQmG0@Q# T̂

2
1

pn̄~2t!2
G0@Q#dQmG0@Q#dQmG0@Q# _T_̂J ,

~32!

where

T̂ 5 R̂ ~11 iQ R̂ !21, ~33!

while dS0@Q,dQf # is generated from the high-order terms
the gradient expansion, and can be approximated as strdQf

2

with a coefficient of the order ofn̄/t. BothQm andG0@Q# in
the above expressions are taken in the momentum repre
tation, with the corresponding adjustment in the definition
str. The matrix T̂ can be viewed as a supersymmetric ge
eralization of theT matrix T[(S21)/2i , whereS is the scat-
tering matrix.

The crucial property of Eq.~32! is that even if the eigen-
values of R̂ grow indefinitely, T̂ stays finite. Moreover,
the Hermiticity of R̂ andQ ensures that the denominator
Eq. ~33! does not generate any singularities. Expanding
logarithm up to quadratic order indQm , and averaging the
action defined by the first two terms in the right hand side
7-10
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Eq. ~32! overdQm , we find that the corresponding contribu
tions to the slow mode action are small as 1/pF,. Conse-
quently,

S@Q#5S0@Q#1SV@Q# ~34!

represents the total slow mode action in the leading orde
1/pF,.

This completes the formal construction of the nonline
s-model action. In the absence of an external perturbatioV,
the functional integral is dominated by the coordina
independent zero modeQ0 provided« i!Ec for all i. In this
limit one recovers the familiar zero-dimensional nonline
s-model action@4#,

S0@Q0#52
ip

2D̄
str@ «̂ Q0#, ~35!

which is well known to reproduce the standard Wign
Dyson correlation functions@4#. The corresponding zero
mode contribution to the action describing parametric co
lations is given by

SV@Q0#52
1

2
str ln~11 i R̂ Q0!. ~36!

As will be shown in the next subsection, Eq.~36! represents
the dominant contribution to the action whenV̂ is a local
perturbation. In the opposite case, the 1/g corrections to the
action can compete with the zero-mode contribution, a
their relative importance depends on the spectral comp
tion of V̂ .

B. Local versus global perturbations

While the zero-dimensional nonlinears-model~35! com-
bined with the interaction action~36! represents the leadin
~zeroth! order term in an expansion in the inverse dimensi
less conductance 1/g, terms of the next order may, unde
certain ~and quite typical! circumstances, produce a contr
bution which can compete with, or even dominate, the c
tribution from SV@Q0#. The presence of such terms is be
understood as resulting from the spatial deformation of
zero mode induced by the spatially inhomogeneous pote
V̂ (r ).

Formally such terms could have been accounted for
seeking spatially inhomogeneous solutions of Eq.~29! at fi-
nite values of V̂ . A simpler computational scheme, how
ever, is made possible by the fact that, to the lead
order, V̂ coupleslinearly to the inhomogeneous modes
Q. Thus, the contribution of the inhomogeneous saddle p
is equivalent to the result of a Gaussian integration aro
the homogeneoussaddle point.

Employing a scheme which was originally introduced
Kravtsov and Mirlin @24# to explore the impact of highe
mode corrections on the universal nonperturbative rand
matrix correlations in a disordered metallic sample, let
parametrize the variation ofQ(r ) on the nonlinear manifold
by setting
03621
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Q~r !5T0eW(r )/2Le2W(r )/2T0
21 ,

where theW(r ) is constrained by the condition that its an
commutator with L vanishes, $W(r ),L%50. To avoid
counting the zero-mode contribution twice, the generators
the nonuniform transverse fluctuationsW(r ) are subject to
the additional constraint*drW(r )50. The spatially uniform
rotations T0 parametrize the zero mode asQ05T0LT0

21.
The effective zero-mode action is obtained by integrat
over W.

An expansion of the action in the powers ofW generates
the hierarchy of nonuniversal corrections to the zero-mo
action organized as a power series in the inverse dimens
less conductance 1/g. Since our interest is in establishing th
leading contribution to the zero-mode action rather than
investigation of 1/g corrections to the leading result, it i
sufficient to keep only the linear terms in the expansion
the action inW.

Expanding the action up to the linear order inW, we
obtainS@Q#.S0@Q0#1SV@Q0#1S8@W,Q0#, with

S8@W,Q0#52
pn̄

8 E drstr@2D~¹W!2#

1
i

2E drstr@LT0
21^r u T̂ ur &T0W~r !#. ~37!

Since we have chosen to employ the real space repres
tion of the generatorsW of the nonuniform fluctuations, Eq
~37! involves real space matrix elements of the operatorR̂ ,
necessitating a switch from the momentum~scattering chan-
nels! representation employed in Eq.~31!.

In the case of local perturbations, integrating overW leads
to a contribution which is simply a 1/g correction toS0@Q0#,
and thus can be ignored in the present study. It is wo
noting, however, that the presence of 1/g correction to the
parametriccorrelation functions stands in marked contrast
the nonparametric case where the leading corrections sta
the 1/g2 order @24#.

Concentrating for the moment on the global perturbatio
we note that, as discussed above, local values of a globV
are necessarily small. Therefore, it is sufficient to appro
mate T̂ .P1/2 V̂ P1/2. The nonuniversal contribution to th
zero-mode actionSW@Q0# is defined as

SW@Q0#52 ln^e2S8&W .

Utilizing the contraction rule@24,25#

^str@A~r1!W~r1!#str@B~r2!W~r2!#&

52P~r12r2!str@A~r1!B~r2!2LA~r1!LB~r2!

2A~r1!LCTBT~r2!CL1A~r1!LLCTBT~r2!CLL#,

whereA andB are arbitrary supermatrices, and making u
of the identityT05LCTT0

21TCL, one obtains
7-11
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SW@Q0#5
~pn̄!2

2 E drdr 8P~r2r 8!str@ V̂ ~r !Q0 V̂ ~r 8!Q0#

5
1

g

~pn̄!2

2p (
qÞ0

1

~qL !2
str~ V̂ qQ0 V̂ 2qQ0!, ~38!

where the diffusion propagator is defined as

P~r !5
1

pg (
qÞ0

eiq•r

~qL !2
. ~39!

Here, as above,g5Ec /D̄ represents the dimensionless co
ductance of the disordered system. The sums in Eqs.~38! and
~39! are restricted touqu,1/,.

The sum

S@Q0#5S0@Q0#1SV@Q0#1SW@Q0# ~40!

represents the total zero-mode action describing param
correlations induced by an arbitrary external perturbati
SW@Q0# involves only the global part ofV, while SV@Q0#
contains contributions from both global and local parts o
genericV. Any corrections to this expression involve term
of higher orders ing21.

We are now in position to analyze the relative importan
of various terms inS@Q0#. Concentrating first on the case o
global perturbations, we have to compare Eq.~38! to the
term coming from the expansion of the actionSV@Q0# to
quadratic order in theV̂ (r ). ~We assume that*drVi(r )
50 for all i, since a nonzero value of the integral can
accommodated by a simple shift of the corresponding
quency « i .) The corresponding contribution is~setting
Rê GR&50 for simplicity!

SV
(2)@Q0#5

~pn̄!2

4 E drdr 8 f d
2~r2r 8!str@ V̂ ~r !Q0V̂ ~r 8!Q0#.

~41!

If V̂ (r ) varies slowly on the length scale of the mean fr
path, making use of the identity*dr f d

2(r )5t/pn̄, one ob-
tains

SV
(2)@Q0#5tD̄

~pn̄!2

4p (
qÞ0

1/,

str~ V̂ qQ0 V̂ 2qQ0!. ~42!

Then, using 1/g[D̄td(L/,)2@D̄t, we see that in this limit
the contribution fromSW dominates overSV

(2) since each
term in the sum overq in SW is larger than the correspondin
term in SV

(2) by a factor 1/q2,2. The latter is large over the
whole range of the summation overq. Taken together with
the contributionS0@Q0#, in the zero-dimensional limit«
,Ec these results recover the standard universal param
correlation functions reported in the literature@10,12#. Spe-
cifically, in the simplest case of the two-point correlatio
function R11, evaluation of Eq.~42! leads to the following
value of the coefficientC(0) in Eq. ~4!:
03621
-

ric
.

a

e

-

ric

C~0!58n̄2E drdr 8V~r !P~r2r 8!V~r !. ~43!

Now, by contrast, let us consider a potentialV̂ (r ) which
has a structure at scales shorter than the mean free path
summation in Eq.~38! still extends only up toq;1/,, while
SV

(2) includes equally all harmonics ofV. Depending on the

spectral composition ofV̂ , either of these terms may be th
dominant one. Crucially, however, bothSW and SV

(2) have
identical functional forms. Again using the case of the two
point correlation function as a representative example,
find that the contribution from fast modes ofV does not
affect either the form of Eq.~8! or the validity of rescaling
Eq. ~4!. Its only effect is to redefine the coefficientC(0), or,
equivalently,x0

2, as described by Eq.~10!.

C. Local perturbations

The structure of the formalism developed above is qu
general, allowing definitive statements about universality
arbitrary many-point correlation functions to be inferre
However, its utility as a generating functional is at prese
largely limited to two-point averages. The parametrization
supermatricesQ0 of high rank presents significant technic
difficulties. Deferring the discussion of universality of man
point correlation functions to the concluding section of t
paper, let us explore the particular case of the two-point pa
metric correlation function of the DOS~6!. We set V̂

5diag(V1 ,V2) instead of the more restrictive notationV̂
5diag(0,V) employed in Eq.~6!, in order to better illustrate
the universality of the results.

As discussed above, in the case of local perturbations
dominant contribution to the action comes fromSV@Q0#. Re-
markably, the supertrace inSV@Q0# can be evaluated explic
itly employing Efetov’s parametrization@4#,

Q05S u 0

0 v D
RA

S cosû isinû

2 isinû 2cosû
D

RA

S u21 0

0 v21D
RA

,

~44!

where u and v are unitary 434 supermatrices andû are
matrices of commuting variables

ûBF
115S iu1 iu2

iu2 iu1
D

TR

, ûBF
225S u 0

0 u D
TR

~45!

with 0<u<p and 0<u1,2,`. The explicit parametrization
of u and v is not needed here because they commute w
V̂ . For systems belonging to the unitary symmetry cla

~i.e., where the time-reversal invariance is lifted!, u250.
Using the parametrization~44! and Eq.~45!, SV@Q0# can

be compactly rewritten as

SV@Q0#5
1

2
str ln~11 i R̂ s3

RAei ûs1
RA

!, ~46!
7-12
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where for convenience we have dropped the subscriptP from
the diagonal matrixR̂ 5diag(R1 ,R2). It is also convenient
to rewrite this expression in terms of the scattering matri
S1,2 which are related to the reactance matrices via

R1,25 i ~S1,221!~S1,211!21.

In terms of

Ŝ 5diag~S1 ,S 2
†!, ~47!

Eq. ~46! takes the form

SV@Q0#5
1

2
str ln@11ei ûs1

RA
1 Ŝ ~12ei ûs1

RA
!#,

where we have used str ln(Ŝ 11)50. Note that the appear
ance ofS † in Eq. ~47! is a consequence of the factors3

RA in
Eq. ~46! and of the identityS(2R)5S †(R). Equation~46!
can be rewritten as

1

2
str ln~11ei ûs1

RA
!1

1

2
str lnS 12 i Ŝ s1

RAtan
û

2
D . ~48!

Since Ŝ is diagonal in the RA space, ands1
RA is off-

diagonal, only even order terms in the series expansion o
second logarithm in Eq.~48! give nonvanishing contribu
tions to the supertrace. As a result, this term can be rewri
as

1

4
str lnS 11 Ŝ 12tan2

û

2
D , ~49!

where Ŝ 125diag(S1S 2
† ,S 2

†S1). A similar transformation
brings the first logarithm in Eq.~48! to the form

1

4
str ln~11cosû !. ~50!

Combining Eqs.~49! and ~50! we find

SV@Q0#5
1

4
str ln~11 i R̂ 12cosû !, ~51!

where

R125 i ~S 2
†S121!~S 2

†S111!21,

and, utilizing the cyclic invariance of the trace,R̂ 12
5diag(R12,R12).

Performing the trace over the BF, RA, and TR indices
Eq. ~51!, and again using the cyclic invariance of the tra
one obtains the effective action:

SV@Q0#5
1

2
tr lnF 112iR12l1l22R 12

2 ~l1
21l2

221!

~11 iR12l!2 G ,

~52!

wherel1,25coshu1,2 andl5cosu. In the unitary ensemble
the corresponding action can be inferred from Eq.~52! sim-
03621
s

he

n

,

ply by settingl251. SV@Q0# is thus easily seen to coincid
with s loc , providedxa are identified with the eigenvalues o
R12.

Finally, differentiatinĝ Z@ j #& ~27! with respect toj and j †

generates the source term for the two-point correlation fu
tion of the form (strQ0s3

RAs3
BF)2. Integrating over the de-

grees of freedom contained in the matricesu and v, one
obtains the general two-point correlator of DOS for the
thogonal and unitary symmetry class, Eqs.~18! and ~7!.

IV. UNIVERSALITY AND CONNECTION TO RMT

A. Universality

Although a specific model ofH0 andHdis was used in the
calculation, the results are valid for any disordered syst
whose spectral statistics exhibit the Wigner-Dyson pheno
enology, since the only crucial ‘‘ingredients’’ in the deriva
tion were the existence of a unique zero mode in the NLsM
description, and a clear distinction between massive and
modes. The results are also valid for generic chaotic syste
although a special consideration may be needed to prop
take into account the contribution from the Lyapunov regi
to the nonuniversal terms@26,27#.

The calculation in Sec. III C underscores the universa
of the two-point parametric correlation functions in the ca
of local perturbations by demonstrating that the phenome
logical parametersya are the eigenphases of the scatteri
matrix S12[S 2

†S1. The importance of this result lies in th
fact that S12 describes the scattering off the potentialV2
2V1 when the unperturbed Hamiltonian isH01V11Hdis.
Thus, all dependence on the ‘‘reference’’ HamiltonianH0 is
excluded from the result: parametric correlations betwe
any H1 and H2 are parametrized by the eigenphases of
scattering matrix off the potentialH22H1 with H1 playing
the role of the unperturbed Hamiltonian~or, equivalently,
scattering offH12H2 with H2 as the unperturbed back
ground!.

In the two-point case, as we have just shown, the co
lation functions betweentwo HamiltoniansH1V1 and H
1V2 depend on asinglereactance matrixR12. At the same
time, the action~31! suitable for the calculation of a gener
p-point correlation function involvingn different values of
the perturbing potentialVi apparently depends on the fu
complement ofn reactance matricesRi . On the other hand
a straightforward generalization of the notion of translatio
invariance in the space of Hamiltonians from two-point fun
tions discussed in the Introduction to the general case im
diately leads to the conclusion that such correlation functi
should depend only on then21 ‘‘mutual’’ reactance matri-
ces which can be chosen as, e.g.,R1i , i 52, . . . ,n.

In the absence of an explicit parametrization of thep
38p Q matrices, it is not possible to perform a calculatio
analogous to the one in Sec. III C to demonstrate that thi
indeed the case. However, such a calculation is, in fact,
necessary. The translational invariance can be inferred
stead from the analysis of the massive modes in Sec. II
Indeed, it was shown there that locally strong perturbatio
do not lead to significant coupling between massive and
7-13
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modes. Consequently, without loss of generality one can
sorbV1 into H0 and redefine the remaining potentials asVi
→Vi2V1. The corresponding reactance matrices would
automatically redefined asR1→0, Ri→R1i .

B. Connection to RMT analysis

The n52 case for arbitraryp ~andb52) has been stud
ied recently using RMT techniques@13,15#. In order to ex-
tend the RMT results to generic disordered/chaotic system
phenomenologicalansatzbased on Berry’s conjecture@19#
was employed in Ref.@13#. The present analysis affords a
opportunity to achieve such an extension in a more rigor
way.

We begin by noting that in thep52 case thestructureof
the two-point parametric correlation functions obtain
above for the disordered systems with broken time-reve
invariance isidentical to the structure of the results obtaine
in Refs.@13,15#. Indeed, according to Refs.@13,15# the two-
point parametric correlation function in random matrix e
sembles of unitary symmetry is

R11~V!512$D̂21@k~s!2d~s!#%@D̂k~s!#.

Here, as before,s5V/D̄, the differential operatorD̂ is de-
fined as

D̂5detS 12RRMT

d

dsD ,

the functionk(s) has been defined in Eq.~3! and RRMT is
the random matrix version of the reactance matrix,

RRMT5
V

12Rê GR&V
.

In the standard random matrix ensembles the real part of
average Green function is a diagonal matrix, thus simplify
the structure of the reactance matrix. Using the Fourier tra
forms

k~s!5E
21

1 dl

2
eipls

and

k~s!2d~s!52S E
2`

21

1E
1

` D dl1

2
eipl1s,

we immediately recover Eqs.~7! and ~9!, wherexa are the
eigenvalues ofR. It is intriguing that the supersymmetri
03621
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a
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structure involving the pair of compact (l) and noncompact
(l1) variables is reproduced under the guise of the dual p
(D̂,D̂21) as a result of the RMT analysis based solely on
method of orthogonal polynomials@13,15#.

It was shown in Refs.@13,15# that in unitary random ma-
trix ensembles thep-point parametric correlation function
has the form

Rp1p2
~$« i% i 51

p !

5D̄pK )
i 51

p1

trd~« i2H ! )
j 85p111

p

trd~« j 82H2V!L
5detS k~si2sj ! D̂21@k~si2sj 8!2d~si2sj 8!#

D̂k~si 82sj ! k~si 82sj 8!
D ,

~53!

where si5« i /D̄, the indices i and j run over the range
1, . . . ,p1, and i 8 and j 8 are in the rangep111, . . . ,p. All
energies« i inside the subsets@1,p1# and @p111,p# are as-
sumed to be different, which corresponds to neglecting
d-function terms describing self-correlations of levels. T
generalization of Eq.~53! to the case when some energi
coincide can be found in Ref.@13,15#. We now note that, in
complement to the orthogonal polynomial method used
Refs.@13,15#, the parametric correlation functions in rando
matrix ensembles can be alternatively studied using the n
linear s-model approach. The resultings-model action has
the form of Eq.~36! parametrized byRRMT. Since they are
described by the same action, the correlation functions h
the samefunctional formirrespective of whether the averag
ing is performed overH drawn from an invariant distribution
or over H5H01Hdis[ĵ p̂1U(r ) where the distribution of
U(r ) is described by Eq.~25!. It follows that the p-point
correlation functions in generic disordered/chaotic syste
of unitary symmetry are given by the universal Eq. (53) w

the operatorD̂ parametrized by the corresponding reactan
matrix R. This conclusion about universality and paramet
zation extends also to the level-number-dependent corr
tion functions studied in Refs.@14,15# since the latter are
based on Eq.~53!.
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