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Universality of parametric spectral correlations: Local versus extended perturbing potentials
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We explore the influence of an arbitrary external potential perturbafiam the spectral properties of a
weakly disordered conductor. In the framework of a statistical field theory of a nontingardel type we find,
depending on the range and the profile of the external perturbation, two qualitatively different universal
regimes of parametric spectral statistic®., cross correlations between the spectra of Hamiltoniuad
H+V). We identify the translational invariance of the correlations in the space of Hamiltonians as the key
indicator of universality, and find the connection between the coordinate system in this space which makes the
translational invariance manifest, and the physically measurable properties of the system. In particular, in the
case of localized perturbations, the latter turn out to be the eigenphases of the scattering matrix for scattering
off the perturbing potentiaV. They also have a purely statistical interpretation in terms of the moments of the
level velocity distribution. Finally, on the basis of this analysis, a set of results obtained recently by the authors
using random matrix theory methods is shown to be applicable to a much wider class of disordered and chaotic

structures.
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I. INTRODUCTION sin(rrs)
K(s)= , 3
TS

The statistical approach to the study of the quantum spec-
tra of complex Hamiltonian$! was pioneered in the 1950s
in connection with the study of resonances in nuclear scat- — ) .
tering[1,2]. The approach was formalized by Dysi@, who s=Q/A, ands, =s+i0. _The delta function in E(;(.Z). rep-
identified three universal types of spectral statistics as detef€S€Nts the autocorrelation of an energy level with itself; the
mined by the symmetry properties of the corresponding enconstant term is the disconnected contribution, and the oscil-
sembles of random Hamiltonians. The theory of Wigner andating term corresponds to nontrivial correlations between
Dyson, together with its extensions, is usually referred to aglifferent levels. Similar, although slightly more convoluted,
random matrix theoryRMT). Within RMT, spectral correla- expressions are well known for other symmetry classes.
tions of each typésymmetry clasgsof statistics are described  As became clear in the subsequent development of the
by the corresponding set of universal functions, once théheory, Wigner-Dyson statistics possesses a remarkable uni-

energies are rescaled by the average level spaEin'g“he versality:. beyond the mgnifestly model cons_tructions of
latter is theonly nonuniversal parameter of the theory, whereRMT, Wigner-Dyson statistics occurs both in quantum
nonuniversality implies dependence on the specifitber ~ weakly disordered systen{8,4] H=H,+Hgs, where the
than the symmetry clagsf the distribution functions defin- statistical description follows naturally from the ensemble of
ing the Hamiltonian ensemble. The symmetry classes are laealizations of the disordered part of the Hamiltontags,
beled by the index3 which takes the valueg=1 for real as well as inindividual classically chaotic Hamiltoniar$]
(time-invariany Hamiltonians (so-called orthogonal clags upon averaging over a sufficiently wide spectral window.
B=2 for complex Hamiltoniangunitary clasy and 3=4  The status of the last two statements is somewhat different:
for Hamiltonians with broken spin-rotation symmetgym-  While the former has been rigorously establish8g], the
plectic class latter statement is known as the Bohigas-Giannoni-Schmit
For example, in the unitary clas@€2), the normalized (BGS) [5] conjecture Crucially, thg existence .of a statistical .
two-point correlation function of the density of stat€0S)  ensemble allows average properties of the disordered Hamil-

v(e)=tré(e—H), tonian to be formulated in the framework of a quantum field
theory of nonlineaw-model type (NloM) valid in the limit
Rz(Q)=K2<V(8+Q/2)V(S—Q/2)> (1) g>1. Here, the dimensionless conductagaenotes a non-

universal parameter which depends on the deterministic part
of the Hamiltonian Ho—and through it on the sample
geometry—as well as on details of the distributionHfs.
By contrast, properties of an individual system are much less
1 * ! i - amenable to treatment by means of a statistical field theor
Ry(s)=1+ —Ref dxlf dre TS+ N) . Y Me: el y
2 7) 1 and, despite recent encouraging progrgds a convincing
formal proof of the BGS conjecture is lacking. The existence
=5(s)+1-k*(s), (2)  of a proof of Wigner-Dyson statistics in quantum disordered
systems generates a dichotomy of approaches: if universality
where is assumedr established by other means, RMT calculations

can be expressed as

1063-651X/2003/68)/03621715)/$20.00 68 036217-1 ©2003 The American Physical Society



MARCHETTI, SMOLYARENKO, AND SIMONS PHYSICAL REVIEW E68, 036217 (2003

can be employed to obtain specific answers. On the othetself a complicated object in an irregularly shaped sample.
hand, NLoM calculations often represent the only available Consequently, direct evaluation of E&) is seldom feasible.
route toestablishuniversality and to explore deviations from On the other hand, collecting statistics on level velocities is
it (typically as expansions in gJ. relatively straightforward, so that Edq4) is the only link

A corollary of the above universality is the fact that, apartbetween the formal parametey and an experimentally mea-
form a possible modification of the average DAS?, the  surable quantity.
spectral statistics dfl =Hy+ HysandHy=Hy+Hy+V are (A brief remark on notation: we denote the parametric
indistinguishabld 7] unlessV is so large thato+Hgs gen-  perturbation aXV whenever the emphasis is on the continu-
erate only perturbative corrections to its eigenval@®  ous evolution of the spectrum &f+ XV as a function ofX
same condition, of course, applies to the relation betviégn along a “straight line” 0<X<1. In what follows nonlinear
and Hgg). Such universality dictates that the statistics ofparameter dependence\sfwill become important, so it will
spectral lines tracing the evolution of eigenvalues as funcphe convenient to revert to denoting the perturbatiol asth
tions of a coordinateX along a typical curve in the Hamil- jig parameter dependence implicit from the conjext.
tonian space connectingo t0 Ho+V must possess some  Thg “phroad class of/’s” which was referred to above is
kind of stationarity{8]. This stationarity is reflected, in turn, distinguished by the following properties. First of all, the
if‘ the universality .Of parametric spectral correlatici® main feature of the class &f's to which the theory of Réfs.
(ie., cross correlations petv_veen the speciraHohnd H.V [10,12 applies is that the level velocity distribution is
averaged over the realizations &fyg). Indeed, as first G ' . : . i

aussian, and is thus fully characterized by its second cumu

pointed out in Refs[10-12, for a broad class o¥’s the . L .
. . | pt. It is, of course, generic in some sense, as the Gaussian-
parametric spectral correlators are expressed via another s? I T

of universal functiongagain determined only by the symme- ity of the level velocity distribution is the result of the central
try of the Hamiltonian ensemblevhich depend, in addition IMit theorem which comes into force for any which is

to the level density, on asingle extra nonuniversal global, or extendedi.e., whenV is a generic “full” matrix in

parameter—the dispersia®(0) of the distribution of level e Hilbert space defined by a typical realization I
velocities A~ 1de, /aX=A"ldye;, where &, is a typical +Hygis (@ more formal definition is ¥*/(trV<)“—0 in the

| . . S L .
eigenlevel ofH. [The use of the notatio(0) for the dis- thermodynamic limit In application to disordered metals,

ersion of the distribution of level velocities is explained b such perturbations are easily realized as, e.g., inhomoge-
P o L P Y neous electric or magnetic fields acting on the whole, or a
the fact that it is the limiting value of the level velocity

substantial part of, the sample volume.

correlation functio_rC(X“)=A_*2<a_;sigX)ﬁ§si(X+X)) [10- Second, the fact that, is linear inX implies thatV is, in
12].] If the curve is a “straight line"H+XV, the rescaled some sense, small. More precisely, individual matrix ele-
parameter ments ofV are small as compared to the mean level spacing
A, even as the overall effect &f is finite due to its global
Xo=X+/C(0) (4) g

extent. It cannot be too strongly emphasized that, for a global
perturbation, the requirement that its matrix elements are
mall is not an artificial constraint, but a self-consistent con-
ition for the existence of finite correlations between the
spectra ofH and H+V: if this condition is violated, the
spectrum ofH+V is so “scrambled” with respect to the
8 spectrum oH that the residual correlations vanish as inverse
X2=—= X%((VILV)), (5)  Ppowers of the system volume. _
A? There exists, however, a class of perturbatignghich do
not quite fall into the paradigm of Ref§10,12. In many
where the double angle brackets denote the matrix elemenptactical applications, for exampl&, cannot be character-
of IT on the vector space spannedWyand the definition of ized as extended. A bistable defect jumping between two
the (nonuniversal operatorll strongly depends oRlg and  nearby configurations, a local STM tip, defects created under
the distribution ofH 4. In a disordered metall becomes a irradiation, etc., belong to a very different type of a perturb-
resolvent of the diffusion operatt0,12], and, ifV is diag-  ing Hamiltonian. On an intuitive level they are easily seen to
onal in the coordinate representation, the matrix elemene “local,” and formally t\V#/(trv?)? is finite for such per-
simplifies to ((VIIV))=L"24[drdr"V(r)II(r,r")V(r'), turbations. Even more crucially, the corresponding distribu-
wherell(r,r’) is the matrix element ofl in the coordinate tion of level velocities is not Gaussidme.g., it is Poissonian
basis,L is the linear size of the sample, adds its dimen-  for a moving local defect in a disordered metal =2, see
sionality. The parametex, can be thought of as a scalar Eq. (24) below], so the results of Ref$10,12 need to be
norm (in the space of Hamiltoniapof the “distance” be- modified.
tweenH and H+ XV, and Eq.(5) can correspondingly be Parametric spectral correlations induced by nonextended
viewed as fixing a particular prescription for the norm. perturbing potentials have been studied previously in the
The importance of Eq4) is underscored by the fact that RMT framework[13—15, leading to a comprehensive set of
in practice, measuriny directly is often impossible or very results for a large class of parametric correlation functions in
difficult, and the Green function of the diffusion operator is the unitary ensemble. As noted above, the use of RMT pre-

is an effective measure of the strengthX¥. Equation(4)

is, in essence, a relation between two phenomenological p
rameters,x, and C(0). It is supplemented by a “micro-
scopic” definition ofx, in terms ofXV [10,12,
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FIG. 1. Parametric dependence of the energy levels of a tight- FIG. 2. Parametric dependence of the energy levels of a time-
binding Anderson Hamiltonian on a X0 lattice as a function of reversal-invariant tight-binding Anderson Hamiltonian on a 20
the strengthX of a fixed global perturbatioigarbitrary unitg. To X 20 lattice as a function of the overall strengthof an external
place the system in the unitary symmetry class, we have imposed grerturbation localized on two fixed sitéarbitrary units.
external random vector potential in addition to the random scalar
potential. Il. PARAMETRIC SPECTRAL

. . . . CORRELATION FUNCTIONS
supposes universality. At the same time, matrix elements of a

local perturbation need not be small. As a typical example, The parametric analog of E¢l)—and the basic object to
let us consider the potential arising in the x-ray emissionivhich we devote most of the attention in this paper—is the
absorption spectra in disordered metals, and the associategbss-correlation function

issue of Anderson orthogonality catastropté]. The poten-

tial U(r) of a charged ion created after an electron has been Rll(Q,V)=K2< v(e+Q/2,0)v(e—QI2;V)), (6)
knocked out of an inner shell by a photon may typically have

a magnitude comparable to the Fermi enesgy and a spa- where v(e;V)=tré(¢ —H—V). The notation is dictated by
tial extent of the order of the Fermi wavelengh:  the fact thatR,; is the special case of the multipoint corre-
=2m/pg. For comparison, an example of a global potentiallation function R, involving n densitiesv(g;;0) and m

to which analysis of Refd.10,12 fully applies is external “shifted” densities »(e;;V). (Within this classification
magnetic field generating a unit of flux through the Samp|eschemeR2 is more properly denoted d8,,.) Its universal
area. The corresponding effective potential is easily estiform (in the case of random Hamiltonians of unitary symme-
mated as €/mc)pA~ee/pel, whereA is the vector poten- try) is given, as established in Refd0,12 for global V, by
tial. In the former case, the potential, although spatially lo-the following expression:

calized, is larger by a factor of square root of the sample

volume (in d=2 dimensions The qualitative difference be- 1 * 1 5 (g = N)— (VA 1X0)
tween the two types of perturbations is vividly illustrated in Ru(s,V)—1= ERe . d\ _1d)\e +(Mg A1i%0)
Figs. 1 and 2 which depict the evolution of a set of levels of (7)

a typical realization oHy+ Hyst+ XV as a function oX for

the cases of global and local perturbations, respectivelyyhere

Note, for example, that in the case of a local perturbation,

even very large values oK do not lead to a complete (N N13X0)=0g(N N 1;X0) = XG(NT—N?)/2,  (8)
“scrambling” of the spectrum.

Given these qualitative differences, the universality of theand x, is given by Eq.(5). Note that the resolvent of the
corresponding parametric correlations cannot be automatdiffusion operatodI(r,r’) is a long-range object, so that the
cally deduced from the analysis of Refd0,12. In this pa- extended character of is essential in the structure of Eq.
per, we utilize the NlzM approach to prove the universality (5). Note also thail is smooth on the scale of the mean free
of the results in Refd.13—15 and to establish their limits of path¢, suppressing the contribution of the fast components
applicability and, crucially, their parametrization in terms of of V to Eq. (5).
non-universal K y-dependentquantities. We also establish a  The basic conclusion of the analysis presented in this pa-
precise criterion for the crossover between the localizeger is that in the case of a local perturbati@m a perturba-
[13,15 and extended10,12 regimes. The NzM also af-  tion which has both global and local componérite overall
fords an extension of some of the previously obtained resultstructure of Eq.(7) is preserved, while the function
to the orthogonal ensemble, although a complete counterpast(\,\;X,) is generalized to
of the results of Refd.13-15 in the orthogonal case is un-
attainable at present. (NN 1;%0,X) = 0gi(N,N1;X0) + Tloc( N, N 15X),
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r (r=1). For example, let us consider an arbitrary function

Tioc N LX) = D [IN(L+ixA ) —In(1+ixM)], (9 f(Xy,X,). The existence of a “natural” set of variables is
a=1 equivalent to the requirement that fany X; and X, the
function f(X;,X,) can be represented ggh(X,) —h(X;))

for some functionsgy and h. Such a representation clearly
exists only for a very restricted subset of all possibléds

where the “local” part oy, of o depends on a vector of
parameterx. The vectorx has a finite number of compo-

nents, reflecting the finite extent of the local component.of follows from the analysis below, the “natural” parametriza-
We also find an additional contribution 1§, which properly tion does indeed exist, and it is effected by the substitution

accounts for the fast spatial oscillations in the extended parts

of V, ya=arctanx, . (12

5X§=4?2f drdr'V(r)f3(r—r")V(r')x2, (100 As will be shown in Sec. llix, are the eigenvalues of the
reactance matrix

wherev=1/ALY% is the average local DoS incadimensional
sample. The Friedel functiofiy(r) represents the averaged
Green function of a disordered system, and is given by

R=i(S-1)(S+1)71, (13

where the scattering matri& describes scattering o¥f with

fa(r)=Jgo_1(per)e "%, (11) free propagation controlled by the Green function tof
=Hy+Hys averaged oveH 4s. The emergence of the reac-
whereJ, is the Bessel function ofyth order. tance matrix as a key object governing parametric correla-

In what sense is Eq9) universal, depending, as it does, tions is rather natural within the formal framework presented
on a whole list of parameters? To answer this question on the subsequent section. However, it is less obvious on an
needs to clarify whether analogs of Eg) can be defined, intuitive level, especially so since the reactance matrix is
i.e., whether these correlation functions are determined by ansed much less frequently in the scattering theory proper
(at most finitg¢ set of phenomenological parameters ratherthan its “cousin” theT matrix (a very detailed exposition of
than the thermodynamically large number of variables in thehe subject can be found, however, in Ref7]). Neverthe-
pair of matricesH, and V. less, it can be qualitatively understood based precisely on the

As will be explained shortlyx, are nonlinear functions of fact that reactance matrix is the Hermitian analog of The
XV. In other words, the transformation analogous to .  matrix. Indeed, the latter is conventionally defined by the
if it exists at all, isnonlinear—in contrast to the simple res- equationV| ..o =7 |xo), Where|xo) is the incident plane
caling required in the global case. The nonlinearity meansvave, and|y.,) is the scattered wave, normalized uait
that, unlike the case of a global perturbation, the overalflux. Similarly, R satisfies an equation of identical structure,
magnitude of the perturbatioX is no longer a “natural” V| )=7R|eq), where|ey) and|¢,) are now the conven-
variable with respect to which level velocity should be de-tionally normalized, respectively, perturbed, and unper-
fined. It is not evena priori clear that such a “natural” turbed, states in elosed systenSince we consider the para-
variable exists. metric correlations of the real eigenvalues of Hermitian

There is, however, an extra requirement that can be imHamiltonians in closed systems, reactance matrix is indeed
posed to make the parametrization unique. To help motivatquite a natural object to appear.
it, let us note that, in the global case,as a function ok, is The eigenvalues ofR are expressed as tangents of the
essentially a Taylor expansion where terms of the ordetorresponding eigenphaséscattering phase shijtsof S.
higher than 2 vanish in the thermodynamic limit. As a result,The parameterg, introduced in Eq(12) thus have an intui-
correlation functions betweed +X;V andH+ X,V for ar-  tive physical interpretation as the corresponding phase shifts.
bitrary X; and X, are functions of thgproperly rescaled The expression of, (ory,) in terms of the reactance matrix
differenceX,— X;. This translationally invariant parametri- should be regarded as the analog of the microscopic defini-
zation is a direct consequence—in fact, the primarytion of x, given by Eq.(5). Moreover, the fact that the “natu-
manifestation—of the principle of stationarity discussed inral” parameters are the eigenvalues of the corresponding re-
the Introduction. On general grounds, such stationarityactance matrix allows for a more direct definition of the
should characterize parametric correlations induced by localpecial set of curves in the space of Hamiltonians which
perturbations as well. Thus, there must exist a “natural” setwere discussed above. These curves can now be represented
of variablesy(x) possessing the following property: there is as sequences of Hamiltonians which map ootmmuting
at least one curve connectirtdly and Ho+V such that the sequences of reactance matrices.
correlations between any two Hamiltonians on this curve It is possible to complete the analogy with the case of
corresponding to two different value§, and X, are func-  extended perturbations by establishing a counterpart of Eq.
tions of the differencey(x,) —y(x;). The distribution of (4). The distributionP(u) of level velocitiesu=de;/dly|
level velocities along this curve is independent of the posi<can be extracted from E@9) with the help of the identity
tion on the curve. In fact, for>1, such curves are not [18]
unique, but rather span ardimensional manifold.

It is worth emphasizing that the existence of such param- P(u)= lim |y| Rll(Q/K:u|y|,y). (14)
etrization is a nontrivial property even for a single parameter ly|—0

036217-4



UNIVERSALITY OF PARAMETRIC SPECTRA . .. PHYSICAL REVIEW E 68, 036217 (2003

Making use of this identity, one obtains the following result: a strip of width 1/2 around it, reflecting the fact that the
averageGreen function exponentially decays over distances
larger thanf so that a scatterer of size larger thars effec-
tively split into independent chunks of siZe Since the al-
gebraic structure of the parametric correlation functions is

wherek,=Y,/|y|. Thus, the cumulant€,, of the level ve- identical in both casels,<¢ andl,>¢, below we will often

., (19

P(u)= Refmdgei””#ex;{ =D In(1+ilky)
0 a

locity are given by omit the subscripP.
In summary, the two ways of definingeither in terms of
(m-1)! o the solutions of Eq(16) or as the eigenphases of the reac-
mZT 321 Ka - (160 tance matrix stand in direct correspondence with the defini-

tion of xq either phenomenologicall4) or microscopically
(5). While very convenient for theoretical analysis, the defi-
nition in terms of the eigenphases is of little practical utility
since measuringR is hardly feasible. On the other hand,
cumulants of the level velocity distribution are readily acces-
sible in appropriately designed experiments.

The universality of the parametric correlation functions is

By choosingly| as the variable, we have already effectively
performed a rescaling analogous to E4). (up to a factor of
), with C,=C(0). Any set ofadditionalr —1 cumulants is
sufficient to invert Eq.(16), thus providing the remaining
(nonlineaj variable transformations between phenomeno

logical constant€,,, and universal parameteyg . Equation - ; :
9 m P 2. =4 explicitly demonstrated through the existence of theins-

(16) establishes the universality of E(Q). Iationallv i : TR £ 1h
Although we have kept the discussion above rather gen_atlona y Invariant parametrization in terms of the scatter-

eral, the most interesting application from the practical poin ng phase 5“'“3-"! t.h's context, the standard unl_versal
view is whenV is diagonal in the coordinate representation, |gner-Dy§on statistics of energy Ie_v_eﬂspectral pomtis
andH, andH 4 together describe weakly disordered metals.COU!d .be viewed as .thboundary pondmorto th? umve_-rsal
The latter are characterized by the hierarchy of scaed statistics ofspgctrgl linesas functions of coordinates in the
>N\g. In this case it is convenient to distinguish two sub-SPace of Hamiltonians.

types of local perturbationg. In the first subtype, the spatial

extentl, of V is smaller thar{. For such perturbing poten- A. Orthogonal ensemble

tials, Eq.(9) can be more compactly rewritten as All of the preceding discussion can be applied verbatim to
o . . 1 the case of orthogonal symmetry provided E@$.and(17)
Toc MM =U(AHTRAYAHTRN TS (A7) e felaced with
where R is the reactance matrix projected onto the Fermi

el 1
surface, and tr denotes the trace in the space of the scattering R(ﬁ)(SaV): 1+ Ref d)\ldxzf dNJI(N, NN )
channels. The full reactance matrix is defined by the equation 1 -1

9%=(1—VR6(GR>)_1V )(ei775+()‘1)‘2_}\)—0'(0)(>\v>‘1v)‘Z;Xva), (18)

where the retarded average Green function is defined aghere

(GRY=((eg—Ho—Hgis+i0)™1), so thatr is formally dis-

tinct from the average reactance matrix ((1 (MAa—N)2A(1—\32)
—VReGR) ~1V); nevertheless, the difference betweégrand J(N NN )=
the average reactance matrix enters only in the subleading

order in\g/€, and can be ignored. Transforming to the mo-

mentum representation it is convenient to split off the anguand the global and local parts ef® are given by, respec-

(NZHNS+HAZ—2AN A, — 1)

lar variables in%% as %(p,p’)=NR(&n;¢',n'), where ¢ tVely,
=p?/2m—¢eg. The projected reactance matri is defined -
aSRﬁ'ﬁ/EWV%(O,ﬁ;O,ﬁ’). O (N At Aot _T %o 1+ 20202— \2—\2—)\2
In the opposite limit.>1,>¢, Eq. (17) retains its struc- Tar (M A A23X0) =5 102 17 A2

ture providedR is replaced with

. and

Rp=PYAH)R(&,n;E 0" )PHAE,
1 14+2iRN A~ R2NZ+AS—1)
where Ufgc)(k)\l,)\z:x)=§tr|n the™ (21 =1
(1+iRN)
(1/2777') (19)

2+ (1/27)2
As before,R has to be replaced witiRp with the corre-
7={/vg is the mean free time, and the trace operation tr issponding redefinition of tr ify>¢.
redefined to include th& degrees of freedom. In other A similar set of expressions can also be written in the
words, the projection onto the Fermi surface is smeared ovesymplectic 3=4) case.
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B. Level velocity distribution and Berry’s conjecture established. This analysis can also be in an obvious way

Applying Eq. (14) to Eq. (18), we find that Eq(15) is a  ©xtended to the cade>1,>{.
special case of a more general expression,
C. Examples

) Before turning to derivation of the above results, it is
instructive to analyze several special cases. For example, if
(20) models a collection of several impurities, it can be approxi-

o ) o . _Mmated as
It is interesting to note that the distribution of level velocities

can be obtained using a completely different approach. As r

P(u)=§Re Owdge‘”ﬁ”+§’2ex;{—§§ IN(1+ilk,)

can be easily seen from the expansion of an arbitrary eigen- V(r)= :E U O(r=ry). (22
valuee; of H+ XV to linear order inX, v k=1
&i(X)=g;+XV;;+0(X?), Crudely speaking, a bistable impurity would have 2 and

v1=—v,, While a local defect created, e.g., by irradiation
would correspond to=1.

Vi :J dr [gi(r)|?V(r), Throughout this subsection we largely restrict the discus-
sion to the unitary ensemble. The corresponding results for

the level velocity coincides with the expectation valuevof B=1 can be straightforwardly obtained in terms of the cor-
in the ith eigenstate oH. Restricting our attention for sim- responding\ integrals starting from Eq(19). .
plicity to the casd,<¢, we can employ Berry's conjecture Despite the fact thaR (or Rp) is a continuous integral

about the distribution of wave function values in chaotic sys-oPerator, the structure of E22) ensures that it possesses
tems[19,20: exactlyr nonzero eigenvalues. Using the cyclic invariance of

the trace, the latter are easily seen to coincide with the ei-

B ~ genvalues of the  asymmetric  matrix My

eXF{—EJ drdr’ (N[ gp(r”) =S _ R, Te) fa(re —rir), where, for arbitraryl, <L,
Plyl= = , the Friedel functiorfy(r) is given by Eq.(11).

(deff =)~ In the simplestr=1 case,M,,, is a number, tag

=v/(1—av), where for brevity we denoter=Re(GR(r

where ind Spat"?l dimensions the matrix elements of the=0)>/7, and the correlation function in the unitary ensemble
integral operatorf are given by the Friedel functiofll),  can be explicitly written in the forntassumingy>0)

which in the limitl,<¢ can be approximated &g(r—r")

= [dne'PF" (=) =3,,_,(per). In this expression the inte- J

gration is performed over all directions of the unit vector Rii(sy)—1= —|—[e‘”5°°‘yk(s)]}
andr=|r—r’|. The fieldsy are complex in the unitary case, 78

and real forB=1. While originally conjecturedfor chaotic s

systems[19], this expression was recentfyroved [20] to — f ds’e™ otYk(s')
hold locally in diffusive systems of unitary symmetry. We o

thus immediately find

0(s)

: (23

where the functiork(s) has been defined in E¢3), there-

— fore reproducing the result obtained previoufBi] using

P(“):Qi: (8(u=Vji/A)o(e—&i)) RMT methods. The functioRy; for r=1 is plotted in Fig. 3
for several different values of together with its Fourier

+eod{ o P transform. One can clearly see the gradual broadening of the
—_ —iZfdr|y; /A
- fﬁw 277J' D i Pl gJee 1l ORvO central peak inherited from th&function term in Eq(2). At
small values ofy the dominant contribution to the broadened
© d peak comes from the correlations between a level and its
' 1 ; . .
=f —eltu — . (21)  parametric “descendant.” It is also worth noting that the
—=2m [de(1+2ifVIBA)]P

parametric correlation function inherits from its nonparamet-

) o . ric limit the sharp oscillatory behavior which is reflected in
The last expression can be shown to coincide with(0),  the singularity(cusp in its Fourier transform

thus indirectly confirming the validity of Berry’s conjecture
in diffusive systems of orthogonal symmetry. Indeggl/|y]| .
coincide with the eigenvalues of the Fermi surface projection R, (t,y)= J dse 27S'R;(s,y) = &(t) + min(t, 1)
of dR/dX|x_o=V. The corresponding projected matrix el- —o

ements ard dr €PF""")"v(r). Using the integral decom-
position of f4(r—r") and the cyclic invariance of the deter- t

. 1-+tarfyg?(t)
minant, the equivalence of Eg0) and(21) is immediately 2

1+tarfy(1+2t)?
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1.5=T
> 1 )
& 5
& &
05
0
8 8
FIG. 3. DOS-DOS correlation function for the rank 1 prob- FIG. 5. DOS-DOS correlation function for the rank2 prob-

lem, Ry4(s,y), for different strengths tay of the perturbing poten- lem, Ry4(s,y), for different values of tag=tany,= —tany,. The
tial: tany= 0.2 (dashed ling tany=0.8 (dotted ling, tany =4 (dot- bold line corresponds to the GUE Wigner-Dyson result,yta,
dashed ling tany— (solid line), while the bold line corresponds while tany=0.2 (dashed ling tany=0.4 (dotted ling, tany=1
to the GUE Wigner-Dyson resuly,=0. The corresponding Fourier (dot-dashed ling tany—c (solid line). The corresponding Fourier
transforms are shown in the inset. transforms are shown in the inset.

whereg(t)=2t—2min(,1)+ 1. Although not directly obvi- In the limitr,,—0 both eigenvalues, as expected, vanish. We
ous from Eq.(23), the perturbed levels in the=1 case ©OMit somewhat lengthy explicit expressions ®y; and its

possess the propertjor y>0) &;<e;(y)<e;., [21]. This  Fourier transform, presenting instead in Fig. 5 the corre-
feature is clearly illustrated in Fig. 4. sponding graphs at several different valuesyofrhe limit

In ther=2 case we restrict our attention to modeling af12—0 can also be used to extract the distribution of level
bistable impurity, thus setting;=—v,=v>0, andr, velocitieszdzue to a moying impurity. _Expanding—IlZ
<¢. Denoting as beforex:Re(GR(rzo»/;, and alsoy ~(1/_2d)!oFr_ we find (setting for_S|mp_I|C|tyc_u=y=0) that
:RB(GR(rgl)W;, Fee=NeTl, and foe=fy(rue), we the distribution ofu=de;/d(pgr) is Poissonian:

find

P(u)= ﬁeulﬂ/v. (249)

v2(a—yfp)*v \/1— f§2+vz(af12— ¥)? This result can be generalized to study the response of the
1—02(y— a?) ' energy levels to a shift in the position of an extended defect.
An experimentally relevant application is the lateral motion
of an STM tip over a disordered two-dimensional electron
gas. Another example is a metallic scatterer inside a micro-
wave ‘billiard’ such as those studied in R§22].
Approximating the potential of an STM tip as a flat
disk of radiusp, U(r)=Uq6(p?—r?), and denoting the dis-
placement of the center of the disk ks the difference be-
tween the potentials produced at two adjacent positions of
© the disk is given, to the first order iR, by V(r)=V(r,¢)
=2Uo\pd(r?—p?)cose, where the direction of the dis-
placement corresponds ¥=0. Therefore, neglecting the
O(U,) corrections tdf 4(r)=Jo(per), one finds that the op-
eratorfVV/A appearing in the expression for the velocity dis-
tribution (21) reduces to a continuous integral operator de-
fined on a circle & ¢p<27:

tanylyzz

X 1

(¢, ¢")= 5 Jo(2pepsin(¢— ¢')/2])cosd’.
FIG. 4. Dependence of the energy levels on the overall strength ™
X of an externalocal (i.e., localized on a single sjt@erturbationv

for a time-reversal invariant tight-binding 220 lattice modelar- ~ Since the corresponding eigenvalugsare symmetric with
bitrary unity. Level anticrossing and the property;<s;(X) respect to zero, the distribution of level velocities can be

<egj,1 [21] are clearly shown. written as
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Bessel function (I)Ky(|u|) [23] and the Gaussian limit.
These crossovers explicitly illustrate the distinction between

0.6 local and global perturbations, and show that the global re-
= gime is achieved when the central limit theorem comes into
= force due to a large number of distinct eigenvaligs Such
= a crossover has been observed in experiments on microwave
E 04 : .

& resonatorg 23] where the appropriate ensemble is orthogo-
nal.
A distinctive feature appearing in this example is that a

- local potential is described by a formally infinite number of

the eigenvaluex, of an integral operator. However, the fi-
nite extent ofV guarantees that all but a finite number of
these eigenvalues are vanishingly small, so that, depending
on the required degree of accuracy, there can always be de-
fined an appropriaténite value ofr.

FIG. 6. Graph ofPSTM(u/U) in the unitary ensemble obtained Ill. FIELD THEORY OF PARAMETRIC CORRELATIONS

for prp=1.5 and 4.0 together with the limiting cases of Poisson o .
(pep—0) and Gaussianpep— =) distributions. The inset shows We turn now to the derivation of the results presented in

the perturbationv(r) arising from the displacement of the disk- the preceding section. To explore the influence of a local
shaped potential. potential perturbation on the ensemble average properties of

the weakly disordered system, we will employ a conven-
. = d¢ B tional approach based on the supersymmetric field-theoretic
PSTM(u/u)zf Z—exp{ig(u/u)—EE In[1 formulation. Since this approach has been reviewed exten-
i *a=0 sively in the literaturd4], we will keep our discussion here
. concise, paying particular attention only to the idiosyncrasies
+(2Ka§/ﬁu)2]}, of the present scheme.
Focusing on the weakly disordered system, our starting
— point is the set of single-particle Hamiltonians
where the average velocity is given by
_ 2 1 (= Hi=&p-eat U(r)+Vi(r),
u?=(u?)=— 2 ng —f dGJS(Zpr sin#)cog26). A A
B pmJo where g,g_eA=(p—eA)2/2m—sF is the kinetic energy op-
erator, a free-particle system subject to an external vector
potentialA. The impurity potentiald (r) is drawn at random
from a Gaussiard-correlated distribution with zero mean,
dand variance

In the unitary caseB=2, the distribution functior(Fig. 6)
shows a crossover from Poisson to Gaussian behaviog@s
increases, while in the orthogonal cdf#y. 7) the crossover
is between the limiting behavior described by the modifie

1 , . . 1
T (UINU(r"))y=—=5(r-1"), (25
27V T
= 10413 wherer is the associated elastic mean free time{/vg. In
= the following, we will limit our considerations to the diffu-
= o sive regime, where the sample sizés greatly in excess of
& sl the mean free patlf and where the wave function is ex-
o500 2 ¢4 6 8 10 N | P w wave Tuncti | X
’ prp F : tended over the volume of the system. Moreover, the energy

scales are arranged in the hierarchy

1 _
8F>_>EC>A,
T

0 - ' . with E;=D/L? and D=vZ/d. In addition to the random
u/a potentialU(r), the diffusive system is subject to a further
o (potentially short-rangedarbitrary external parametric per-
FIG. 7. Graph ofPgqy(u/u) in the orthogonal ensemble ob- turbation which can take valuesV;(r).
tained forpep=1.8 andpep=5 together with the limiting cases of Our goal initially is to construct a formalism which al-
Pep—0 andpep— . The inset showsi=(u?)2 as a function of  lows, at least in principlésee below, to compute multipoint
Pep. correlation functions of the DOS,

036217-8



UNIVERSALITY OF PARAMETRIC SPECTRA . .. PHYSICAL REVIEW E 68, 036217 (2003

P decoupled by means of a Hubbard-Stratonovich transforma-
R(s;V)=<H v(g; ;Vi)>, (26)  tion with the introduction of X 8p-component superma-

=1 trix fields Q(r). In the absence of symmetry breaking
where e andV denoten-dimensional vectors with compo- sources, the resulting action is invariant under pseudounitary

£ P ) . P transformations,O—TQOT %, where T satisfiesT'LT=L,

nentse; gnd Vi, respectively, and/(e;; Vi) 1S the_ value of 54 thus belongs to the pseudounitary supergroup
the density of stat.es at energy of the Hamiltoniané;+ U U(2p,2p|4p). Moreover,Q satisfies the time-reversal sym-
+V;. For generality, let us assume th@en, so that some  metry constrain@=LCTQTCL.
of V; in Eq. (26) are equal. The energies ine (which are After performing the integration over the superfieNis

generically differentare correspondingly split into groups  gne obtains the ensemble-averaged generating functional
of size p;, each group matching a given valie. More-

over, from now on, we assume that the Fermi enesgy B 5]
which is included in the free Hamiltonia%[], is subtracted <Z[O]>_f DQe '
from the energies; .

According to the standard methof12], the generating Where the actior§[ Q] is
functional required to construct a field-theoretic representa-
tion of R(g;V) in the case of unbroken time-reversal sym-
metry is written as a functional integral over an
8p-dimensional supermultiplet of complex fields:

Z[j]:J D(zﬂ,z,b)exp{ij dr{w[ = -&-u(r)

-V (r)]w+wtj+jte}, 27)

__ﬂ';fd 2+lfd Ing-1 28
g 2o]= . rstrQ > rstr{inGg=*[r), (28

and
G HQVI=7 =5V (N+ 50

denotes the supermatrix Green function. The description of
where, by choosing the fieldg to consist of 2 copies of  the structure of supermatrices and the definition of the super-
both boson(B) and fermion(F) elements, the normalization trace(here, ste=trg—trg) operation can be found in Rd#].
of the generating functiorg[ 0]=1 is enforced. The factor 2 The action(28) possesses an almost degenerate saddle-
in 2p is explained by the need to generate both retaf@®d point manifold. Varying the action with respect @, one
and advancedA) Green functions, so tha.t:i°=(sia§A obtains the saddle-point equation
+aR0)® o ®@aR. The further doubling of the number

of components of the superfields is dictated by the need to

i —
properly take into account the soft modes associated with the Qr)= 77_7<r|g[ Q; VIr). (29)
time-reversal invariance of the Hamiltoniéimence the nota-
tion TR for the corresponding subspace This equation can be interpreted as the self-consistent Born
approximation for the self-energy of the supermatrix Green
- i( ¥ ) vi=(Ccw)T, w=cwhH' function. The ambiguity involved in choosing among the dif-
J2\v* —_ ' ' ferent disconnected solutions of this equation is resolved by

taking into account the analytical properties of the average
whereC= o "®EST+io3R"ESy, and theE matrices are the Green functionQ=A. In the limit ¢ —0 and V —0, the
projectors onto the corresponding parts of the superspace. Baddle-point solution expands to fill the degenerate manifold
stay close to the conventional notation adopted in the literagenerated by transformationg®@=TAT %, where T
ture, in the following we will denote¥*=A. The conjugate e U(2p,2p|4p).

superfields are defined by=y'L, whereL=A®E} +1

®ES5 (further details on notation can be found in Rgf]). A. The nonlinear -model

Finally, & °=diag(e{, ... ,sg), V =diag(Vy, ... Vo), In the standard schenfd] leading to the NloM structure

and the absence of an explicit operator in any subspace abf the field theory, the fluctuations of in the direction
ways implies the corresponding identity operator. perpendicular to the saddle-point manifold are massive due

The only exception to this structure is the cgse?2, to the inequalitypr¢>1. Moreover, in the leading order in
where it is sufficient to represent each of the two DOS fac-1/pg¢, these fluctuations are quadratic and independent of
tors by either a retarded or an advanced Green function, witthe transverse fluctuations. As a result, integration over the
the opposite choice for the remaining factor, thus reducingnassive modes does not lead to any modifications of the
the number of required components of the superfields fronsaddle-point action apart from an overall constant multiply-
16 ing Z; supersymmetry further ensures that the constant is
to 8. equal to 1. In the case of global parametric perturbations this

An ensemble average of the generating functiofiil ] scheme is preservdd0,12 due to the fact thav(r) is lo-
over realizations of the random impurity potentid(r) in-  cally small, as discussed above. However, it is aqdriori
duces a quartic interaction of the fields, which can be obvious that the same is true in the case of local perturba-
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tions, since the latter are locally large. Therefore, care has to
be exercised in the derivation of the parametric version of
NLoM to demonstrate thdi) local perturbations do not de-
stroy locally the saddle-point structutee., the distinction
between the massless transverse and massive longitudinal
fluctuations is preservedand (ii) that any possible cross
couplings between massive and soft modes mediataddiy
not modify the saddle-point action in the leading order indetermines the form a8S[Q, Qy]. In the limit = r<1 the
1/pe€. cross coupling betweer °and V can be neglected, so that
To undertake this program, we begin by separating th&€j[Q] in the last term in Eq.(30) can be replaced with
fluctuations around the saddle-point manifold into transversgg[ Q].
modesQ(r), which are nearly massless and slowly varying Employing the conditiorz7>1, a gradient expansion of
on the scale of the mean free path and massive modes the first two terms in Eq(30) leads to the conventional non-
6Qm(r), in such a way thab(r)=Q(r) + éQu(r). The lat- linear o-model action
ter include the longitudinal fluctuationdQ, as well asfast
transverse fluctuationdQ;. The need to account for fast
transverse fluctuations arises from the fact that local pertur-
bations vary rapidly on the scale of the wavelenyth, so
that their coupling to fast transverse modes caragtiori
be ignored. In principle, a naive inclusion of fast transvers
fluctuations can lead to overcounting, as, e.g.,pa @iffu-
sion propagator mode is a Cooper propagator, and vice versa.
Nevertheless, below we will demonstrate that massive modes
do not in fact generate any corrections to the slow mode

0 Q1=31Q]- 5-0Q15Q, Q]

(27)?

T -
SO[Q]z—?j dr str[D(VQ)?+4i s Q.

Using the identity strIni— Re(GRYV )=0, the last term in
eEq (30) can be rewritten as

S/[Q]= ;Strlr‘(JHiQ’ﬁ ), (31)

action in the leading order in i£¢, and a detailed calcula-
tion of the subleading terms is not needed.

By definition, the longitudinal modes are orthogonal to
the  saddle-point  manifold, therefore  satisfying
[6Qi(r),Q(r)]=0.
can be parametrized a®(r)=T(r)AT (r). The corre-

sponding free supermatrix Green functic®[Q]=¢[ ¢ °
=0,6Q,=0; V =0], obeys the relation:

— r+r’
go(r,r’)=Re(GR(r,r’)>—im/fd(r—r’)Q(T),

where the retarded Green function is definedcds=(— g
—U+i0)"! and wheref 4(r—r’) denotes the Friedel func-
tion (11).

Separating th&/-dependent parts of the action, we repre-
sent it as
S Q]=9Q]+69Q,8Qnm],
where

§0]= - gf dr strQ?+ %f drstr(r|/InG 1 QJIr)

+%f dr str(r[In(1-Gg[Q] V )]r), (30

Gg[Q]=g[Q; V =0], and the expansion

In contrast, the slow transverse modes

where the operation str is assumed to include the trace over
the scattering channels’ degrees of freedom. Similarly,
69 Q,5Q,,] takes the form

69 Q,8Qm]=— str5Q| +6S[Q, Q]+ 1Str In[

7Tgo[Q]6<:>.mgo[Q]“T

2 )zgo[Q]5Qon[Q]5ngo[Q] T]

(32)

where

T=RO+IQR) Y, (33
while 6Sy[ Q, 6Q¢] is generated from the high-order terms in
the gradient expansion, and can be approximated é@%tr

with a coefficient of the order aof/ . Both Qmandgy[Q]in
the above expressions are taken in the momentum represen-
tation, with the corresponding adjustment in the definition of

str. The matrix 7 can be viewed as a supersymmetric gen-
eralization of thel matrix 7=(S—1)/2i, whereS is the scat-
tering matrix.

The crucial property of Eq.32) is that even if the eigen-
values of R grow indefinitely, 7 stays finite. Moreover,
the Hermiticity of R andQ ensures that the denominator in
Eq. (33) does not generate any singularities. Expanding the
logarithm up to quadratic order iQ,,, and averaging the
action defined by the first two terms in the right hand side of
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Eq. (32) over 6Q,,, we find that the corresponding contribu- Q(r):TOeW(f)’ZAe‘W(f)’ZTgl,
tions to the slow mode action are small apll. Conse-

quently, where theW(r) is constrained by the condition that its anti-

FQ]=S[Q]+S/[Q] (34) ~ commutator with A vanisheg,{W(r),A}:O. To avoid
counting the zero-mode contribution twice, the generators of
represents the total slow mode action in the leading order ithe nonuniform transverse fluctuatiod#(r) are subject to
1/pet. the additional constraintdrW(r)=0. The spatially uniform
This completes the formal construction of the nonlinearrotations T, parametrize the zero mode @)zTOATgl.
o-model action. In the absence of an external perturbation The effective zero-mode action is obtained by integrating
the functional integral is dominated by the coordinate-overW.

independent zero modg, providede;<E. for all i. In this An expansion of the action in the powers\&fgenerates
limit one recovers the familiar zero-dimensional nonlinearthe hierarchy of nonuniversal corrections to the zero-mode
o-model action4], action organized as a power series in the inverse dimension-

less conductance d/ Since our interest is in establishing the
iT leading contribution to the zero-mode action rather than the
Sol Qol =~ Z_ES“[ & Qol, (39 investigation of 1g corrections to the leading result, it is
sufficient to keep only the linear terms in the expansion of
which is well known to reproduce the standard Wigner-the action inW.
Dyson correlation function$4]. The corresponding zero-  Expanding the action up to the linear order \4 we
mode contribution to the action describing parametric correobtain S{Q]=Se[ Qo]+ Sy[ Qo] +S'[W,Qo], with
lations is given by

1 _ , :_w_7 B ,
S\[Qo]=— 5strin(l+i R Qo). (36) STW.Qol=- 3 fdrstr[ D(VW)2]

As will be shown in the next subsection, E§6) represents + IEJ drstf ATy Xr| T|r)ToW(r)]. (37
the dominant contribution to the action whevi is a local
perturbation. In the opposite case, thg tbrrections to the
action can compete with the zero-mode contribution, an
their relative importance depends on the spectral compos

tion of V .

on of the generator®V of the nonuniform fluctuations, Eq.

(37) involves real space matrix elements of the operafor,
necessitating a switch from the momentgseattering chan-
nely representation employed in E@1).

In the case of local perturbations, integrating owéleads

While the zero-dimensional nonlinearmodel(35) com-  to a contribution which is simply a @/correction toSy[ Qq],
bined with the interaction actio(86) represents the leading and thus can be ignored in the present study. It is worth
(zeroth order term in an expansion in the inverse dimensionnoting, however, that the presence of Xorrection to the
less conductance d/ terms of the next order may, under parametriccorrelation functions stands in marked contrast to
certain (and quite typical circumstances, produce a contri- the nonparametric case where the leading corrections start at
bution which can compete with, or even dominate, the conthe 142 order[24].
tribution from S,[Q,]. The presence of such terms is best Concentrating for the moment on the global perturbations,
understood as resulting from the spatial deformation of theve note that, as discussed above, local values of a gidbal
zero mode induced by the spatially inhomogeneous potentiare necessarily small. Therefore, it is sufficient to approxi-

V (n). mate 7 =PY?V PY2 The nonuniversal contribution to the
Formally such terms could have been accounted for byero-mode actiors,[ Qo] is defined as
seeking spatially inhomogeneous solutions of &9) at fi-

nite values of V. A simpler computational scheme, how- SWQol= —|n<e—5’>w_
ever, is made possible by the fact that, to the leading

order, V coupleslinearly to the inhomogeneous modes of Utilizing the contraction rulé24,25
Q. Thus, the contribution of the inhomogeneous saddle point
is equivalent to the result of a Gaussian integration aroun
the homogeneousaddle point. ?str[A(rl)W(rl)]str[B(rz)W(rz)]>
Employing a scheme which was originally introduced by =2I1(ry—ry)st{A(r1)B(ro) —AA(r;)AB(r,)
Kravtsov and Mirlin[24] to explore the impact of higher ToT ToT
mode corrections on the universal nonperturbative random ~A(ry)LC B (r)CL+A(r)) ALC'B (rz)CLA],
matrix correlations in a disordered metallic sample, let us
parametrize the variation @(r) on the nonlinear manifold whereA andB are arbitrary supermatrices, and making use
by setting of the identityTo=LC'T, *"CL, one obtains

?Since we have chosen to employ the real space representa-
[

B. Local versus global perturbations
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N2 —
Sl Qol= 2 J’drdr’H(r—r’)str['\7(r)QO'\7(r’)QO] C<0)=8v2fdrdr'V<r>H<r—r'>V<r>. (43
1 (mv)? Now, by contrast, let us consider a potentidl(r) which

StV qQoV —qQo)  (39) has a structure at scales shorter than the mean free path. The

9 27 §70 (qL)?
summation in Eq(38) still extends only up ta~ 1/¢, while

where the diffusion propagator is defined as S{?) includes equally all harmonics af. Depending on the
_ spectral composition oV , either of these terms may be the
1 elar dominant one. Crucially, however, bo®, and S have
nm=— 3 (39 >

identicalfunctional forms Again using the case of the two-
point correlation function as a representative example, we
find that the contribution from fast modes df does not
affect either the form of Eq(8) or the validity of rescaling
Eq. (4). Its only effect is to redefine the coefficie@(0), or,
equivalently,x3, as described by Eq10).

mg 470 (qL)?

Here, as aboveg=E_./A represents the dimensionless con-
ductance of the disordered system. The sums in 8§sand
(39) are restricted tog|<1/¢.

The sum

S Qol=So[ Qo]+ Su[ Qo]+ Swl Qo] (40) C. Local perturbations

represents the total zero-mode action describing parametric The structure of the_ f_ormallsm developed ab(_)ve Is quite
correlations induced by an arbitrary external perturbation_general, allowing definitive statements about universality of

. . arbitrary many-point correlation functions to be inferred.
cS\c/)VrEt(g\?r]l slr(]:\(/)ﬂ;/r?bsut(i) (;]rlmys tffrwgmgltc))ct))t?]l [)Iiga?%n\évrl]cl)lsalsvgtos] of However, its utility as a generating functional is at present
enericV. Any corrections to thisgex ression invoIF\)/e termsal"’lrgeIy limited to two-point averages. The parametrization of
9 - ANy 1 P supermatricef), of high rank presents significant technical

of higher orders irg™-. o . . i > .
We are now in position to analyze the relative importanced'ﬁ'CUIt'eS' Deferring the discussion of universality of many-

of various terms ir§[Q,]. Concentrating first on the case of point correlation functions to the concluding section of the
global perturbations Své have to compare E86) to the paper, let us explore the particular case of the two-point para-

term coming from the expansion of the acti®g[Q,] to metric correlation function of the DO%6). We set V

quadratic order in theV (r). (We assume thafdrV,(r)  —diag(V1,Vy) instead of the more restrictive nof[atio'ﬁ
—0 for all i, since a nonzero value of the integral can be= diag(0V) employed in Eq(6), in order to better illustrate

accommodated by a simple shift of the corresponding freth€ universality of the results. _
quency &;.) The corresponding contribution igsetting As discussed above, in the case of local perturbations the

Re(GR)=0 for simplicity) dominant contribution to the action comes fr&y Qq]. Re-_
markably, the supertrace B[ Q] can be evaluated explic-
(77)2 itly employing Efetov’s parametrizatioft],

SP[Qal=— fdrdr'fﬁ(r—r')str[v(r)QN(r’)QOJ.

1 0 (u O) (cosb isin@) (ul 0)
1o v/.\ —isind —cosd ral O v s

If 'V (r) varies slowly on the length scale of the mean free (44)
path, making use of the identitj/drfﬁ(r)zr/wv, one ob- A
tains whereu and v are unitary 4<4 supermatrices and are
matrices of commuting variables
_(71_;)2 1 . .
SPIQol=rA > stV Qo V Qo). (42 ‘0. ig -
41§70 -1 101 102 22 (45
5 lie, iey) 0 PT o 6]

Then, using I=A7d(L/€)%>A 7, we see that in this limit

Ehe C.onttrzlbutmn from_SW dprr:lnateihovetrﬁv since ea(;:.h with 0= #=< = and O< 6, ;<. The explicit parametrization
ermin (%sum oveq in SWZ'SZ argerthan the cormesponding ot , andy is not needed here because they commute with
term in S’ by a factor 1g¢“. The latter is large over the —

whole range of the summation ovgr Taken together with V ' FC;: sys’;}em; belonglnglt_o th? unlta}ryl_symrietry class
the contributionS,[Qq], in the zero-dimensional limik ("eL'J’ w erﬁt € tlme-rgversa ;{nvaréagcedlrss ifted,=0.

<E_, these results recover the standard universal parametr'g sing t ?I pararqc:tnzaﬂo(ﬂ ) and Eq.(45), Sy[Qo] can
correlation functions reported in the literatyrd0,12. Spe- € compactly rewntien as

cifically, in the simplest case of the two-point correlation L

function Ry;, evaluation of Eq(42) leads to the following _ = RA_ipsRA

value of the coefficien€(0) in Eq. (4): SQol= 23tr|n(Jl+| R ogie™), (46)
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where for convenience we have dropped the subseripgm  ply by settingh,=1. S,[ Qo] is thus easily seen to coincide

the diagonal matrixR =diag(R;,R,). Itis also convenient With aj,c, providedx, are identified with the eigenvalues of
to rewrite this expression in terms of the scattering matrice12-

S, which are related to the reactance matrices via Finally, differentiating( 2[j]) (27) with respect tg andj"
_ generates the source term for the two-point correlation func-
R12=1(S1o- (St D)7 h tion of the form (stQq05" 05" )2. Integrating over the de-
In terms of grees of freedom contained in the matriagesand v, one

obtains the general two-point correlator of DOS for the or-

3 =diag S,,S)), 47 thogonal and unitary symmetry class, E¢&3) and (7).

Eq. (46) takes the form IV. UNIVERSALITY AND CONNECTION TO RMT

S/ [Qo]= %strlr[]H—ei 90§A+"§ (1—¢ 90?\)], A. Universality
Although a specific model dfi; andH 45 was used in the

calculation, the results are valid for any disordered system
whose spectral statistics exhibit the Wigner-Dyson phenom-
enology, since the only crucial “ingredients” in the deriva-
tion were the existence of a unique zero mode in therML
description, and a clear distinction between massive and soft
modes. The results are also valid for generic chaotic systems,
. (49 although a special consideration may be needed to properly

take into account the contribution from the Lyapunov region
- . RA to the nonuniversal ternm£6,27.
Since S is diagonal in the RA space, andl;" is off- The calculation in Sec. IIl C underscores the universality
diagonal, only even order terms in the series expansion of thef the two-point parametric correlation functions in the case
second logarithm in Eq(48) give nonvanishing contribu-  of local perturbations by demonstrating that the phenomeno-
tions to the Supertrace. As a reSUlt, this term can be reertter@)gica| parameters/a are the eigenphases of the Scattering

where we have used strig(+1)=0. Note that the appear-
ance ofS' in Eq. (47) is a consequence of the facte§” in
Eq. (46) and of the identityS(—R)=ST(R). Equation(46)
can be rewritten as

Lstrin(14+ 698+ Sstrin 113 oAt /
2srn( e ) Sstrin IS optan;

as matrix S;,=S1S;. The importance of this result lies in the
1 ) fact that S;, describes the scattering off the potentis
Zstrinl 1+ 3 12tanz—), (49) —V; when the unperturbed Hamiltonian H$O+y1+ Hdi§.
4 2 Thus, all dependence on the “reference” Hamiltontdg is

. _ - o . excluded from the result: parametric correlations between
where S 1,=diag(5:5;,5,81). A similar transformation  any H, andH, are parametrized by the eigenphases of the

brings the first logarithm in E¢(48) to the form scattering matrix off the potentiaf,—H, with H; playing
the role of the unperturbed Hamiltonigor, equivalently,
1strlrn(l+cos?9). (500  Scattering offH,—H, with H, as the unperturbed back-
4 ground.

In the two-point case, as we have just shown, the corre-
lation functions betweenwo HamiltoniansH+V; and H
1 . A +V, depend on &inglereactance matrifR,,. At the same
S/[Qo]= Zs,tr|n(1+i R 1,€086), (51  time, the action(31) suitable for the calculation of a generic
p-point correlation function involvingh different values of
the perturbing potential/; apparently depends on the full
complement oh reactance matriceR;. On the other hand,
Rip=1(S3S—1)(818,+1) 71, a straightforward generalization of the notion of translational
invariance in the space of Hamiltonians from two-point func-
and, utilizing the cyclic invariance of the traceR ;,  tions discussed in the Introduction to the general case imme-
=diag(R12,R12). diately leads to the conclusion that such correlation functions
Performing the trace over the BF, RA, and TR indices inshould depend only on the—1 “mutual” reactance matri-
Eq. (51), and again using the cyclic invariance of the trace,ces which can be chosen as, ey, i=2,... .
one obtains the effective action: In the absence of an explicit parametrization of the 8
X 8p Q matrices, it is not possible to perform a calculation
14+ 2iRiA N — RE(NZ+N5—1) analogous to the one in Sec. Il C to demonstrate that this is
. 2 ' indeed the case. However, such a calculation is, in fact, not
(1+iRgoN) : N . .
(52) necessary. The translgtmnal invariance can bg inferred in-
stead from the analysis of the massive modes in Sec. Il A.
where\ ; ,=coshé; , and\ =cosé. In the unitary ensemble, Indeed, it was shown there that locally strong perturbations
the corresponding action can be inferred from E) sim-  do not lead to significant coupling between massive and soft

Combining Eqgs(49) and(50) we find

where

1
SWQol= St In
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modes. Consequently, without loss of generality one can alstructure involving the pair of compack) and noncompact
sorbV, into Hy and redefine the remaining potentials\gs (A ;) variables is reproduced under the guise of the dual pair

—V;—=V;. The corresponding reactance matrices would bgp H~1) as a result of the RMT analysis based solely on the

automatically redefined a8, —0, Ri—Ry; . method of orthogonal polynomial43,15.
It was shown in Refd.13,15 that in unitary random ma-
B. Connection to RMT analysis trix ensembles the-point parametric correlation function

Then=2 case for arbitrarp (and 3=2) has been stud- Nas the form
ied recently using RMT techniqué¢43,15. In order to ex- b
tend the RMT results to generic disordered/chaotic systems Bo.p,(18i}1=1)
phenomenologicahnsatzbased on Berry's conjectufel9]

p p
was employed in Ref.13]. The present analysis affords an —AP ﬁ tro(e;—H) H tré(e —H—V)
opportunity to achieve such an extension in a more rigorous i=1 ' i Zpy+1 J
way.
We begin by noting that in thp=2 case thestructureof k(si—=sj) D Yk(s; —Sj)—d(si—sj)]
the two-point parametric correlation functions obtained  =det . '
DK(si'—sj) K(si'—sj)

above for the disordered systems with broken time-reversal
invariance isdenticalto the structure of the results obtained (53
in Refs.[13,15. Indeed, according to Refkl3,15 the two-
point parametric correlation function in random matrix en-\nere Sizsi/K; the indicesi andj run over the range
sembles of unitary symmetry is 1,...py, andi’ andj’ are in the rangg,+1, ... p. Al
~_ A energiese; inside the subsetsl,p,] and[p,;+1,p] are as-

Ri1(Q)=1—{D [k(s)— 8(s) [ DK(s)]. sumed to be different, which corresponds to neglecting the
o-function terms describing self-correlations of levels. The
generalization of Eq(53) to the case when some energies
coincide can be found in Reff13,15. We now note that, in
complement to the orthogonal polynomial method used in
Refs.[13,15, the parametric correlation functions in random
matrix ensembles can be alternatively studied using the non-

the functionk(s) has been defined in EG3) and R y1 is linear o-model approach. The resultingemodel action has

the random matrix version of the reactance matrix, the form of Eq.(36) parametrized byRgyr. Since they are
described by the same action, the correlation functions have

Vv the samdunctional formirrespective of whether the averag-
ing is performed oveH drawn from an invariant distribution
or over H=Hgy+Hge=&+U(r) where the distribution of

In the standard random matrix ensembles the real part of thel (") iS described by Eq(29). It follows that the ppoint
average Green function is a diagonal matrix, thus Simp”fyingcorrelatlon functions in generic disordered/chaotic systems

the structure of the reactance matrix. Using the Fourier tran<2f Unitary symmetry are given by the universal Eq. (53) with

forms the operatorD parametrized by the corresponding reactance
matrix R. This conclusion about universality and parametri-
zation extends also to the level-number-dependent correla-

_ — AimAS
k(s)= f_l 2 € tion functions studied in Refd.14,15 since the latter are
based on Eq(53).
-1 o)
k(s) = d(s)= _( f,w * L One of us(F.M.M.) would like to acknowledge the finan-
cial support, in part, of Cofinanziamento MIURProt.

we immediately recover Eqs$7) and (9), wherex, are the  2002027798and TCM group, and, in part, of EPSRGR/
eigenvalues ofR. It is intriguing that the supersymmetric R9595).

Here, as befores=Q/A, the differential operatoD is de-
fined as

. d
D= de( 1- E)‘{RMTd—S

Rt = ———————
"M 1 —Re(GR)V

and
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